

# Summary Report Biosparging System Operations at Old Navy Fuel Farm January-June 1998 Naval Air Station, Brunswick, Maine

Contract No. N62472-92-D-1296 Contract Task Order No. 0035



Northern Division
Naval Facilities Engineering Command
10 Industrial Highway
Mail Stop No. 82
Lester, Pennsylvania 19113-2090

Prepared by

EA Engineering, Science, and Technology
The Maple Building
3 Washington Center
Newburgh, New York 12550

November 1998 FINAL 296.0035



The Maple Building 3 Washington Center Newburgh, NY 12550 (914) 565-8100

# LETTER OF TRANSMITTAL

| TO <u>M</u> | As. Claudia     | Sait          | -Mayoran                                                         | <del></del>  |                                 |                                         |
|-------------|-----------------|---------------|------------------------------------------------------------------|--------------|---------------------------------|-----------------------------------------|
| N           | Maine Depar     | tment of I    | Environmental Protection                                         | 7            | DATE 11/23/98                   | JOB NO. 296.0035.3650                   |
|             |                 |               |                                                                  | <del></del>  | ATTENTION: Ms. Claudia Sa       | it                                      |
| <u> </u>    | state House,    | Station 17    |                                                                  |              | RE: Contract No. N62472         | 2-92-D-1296                             |
| <u>A</u>    | August, ME      | 04333-001     | 7                                                                |              | CTO No. 0035                    |                                         |
|             |                 |               | •                                                                |              |                                 |                                         |
|             |                 |               |                                                                  | ,            |                                 |                                         |
| WE          | ARE SENDI       | NG YOU        | [X] Attached                                                     | [] Unde      | r separate cover viat           | he following items:                     |
|             | [] Shop         | drawings      | [] Prints [] Plans                                               | [] Samp      | oles' [] Specific               | eations                                 |
|             | [ ] Copy        | of letter     | [] Change order                                                  | []           |                                 |                                         |
| COPIES      | DATE            | NO.           |                                                                  |              | DESCRIPTION                     |                                         |
| 1           | 11/23/98        |               | Final Summary Report, Biospar<br>Naval Air Station, Brunswick, I |              | Operations at Old Navy Fuel Far | rm, January-June 1998,                  |
|             |                 |               |                                                                  |              |                                 |                                         |
|             |                 |               |                                                                  |              |                                 |                                         |
|             |                 |               |                                                                  |              | _                               |                                         |
| THESE ARE   | TRANSMIT        | TED as chee   | cked below:                                                      |              |                                 |                                         |
|             | For approval    |               | [ ] Approved as submitted                                        | ed           | [ ] Resubmit                    | copies for approval                     |
| []          | For your use    |               | [ ] Approved as noted                                            |              | [ ] Submit                      | copies for distribution                 |
| []          | As requested    |               | [X] Returned for correcti                                        | ions         | [ ] Return co                   | rrected prints                          |
| []          | For review and  | d comment     | []                                                               |              | ,<br>                           |                                         |
| []          | FOR BIDS DU     | J <b>E</b>    | 19                                                               | []PRIN       | ITS RETURNED AFTER LOAI         | N TO US                                 |
| REMARKS_    | Enclosed        | I please find | revised text and table pages of the                              | ahove refere | nced document. These pages no   | ay correctly reflect the                |
|             |                 |               | to the last the last pages of the last on 20 November 1998. NOTE |              |                                 |                                         |
|             | for the inconve |               | \$                                                               |              |                                 |                                         |
|             |                 |               | •                                                                |              |                                 | A                                       |
|             |                 |               | <u>1,                                    </u>                    |              |                                 | , , , , , , , , , , , , , , , , , , , , |
|             | E. Klawitter (v |               |                                                                  | NED          |                                 | ugeit forless.                          |
|             | T. Williams (v  | w/ enclosure  | ) " " O " O " O " O " O " O " O " O " O                          |              | John A. Carnright               |                                         |

The Maple Building 3 Washington Center Newburgh, NY 12550 Telephone: 914-565-8100 Fax: 914-565-8203



20 November 1998

Ms. Claudia Sait
Maine Department of Environmental Protection
State House, Station 17
Augusta, Maine 04333-0017

RE: Final Summary Report, Biosparging System Operations at Old Navy Fuel Farm, January-June 1998, Naval Air Station, Brunswick, Maine Contract No. N62472-92-D-1296; Contract Task Order No. 0035 EA Project No. 29600.35

Dear Ms. Sait:

On behalf of the Department of the Navy, EA Engineering, Science, and Technology is pleased to submit the above referenced report. This report is submitted for your information and use.

If additional information is required, please contact Mr. Emil Klawitter at (610) 595-0567, Ext. 161.

Sincerely

John A. Carnright Project Manager

JAC/caw Enclosures

cc: E. Klawitter T. Williams



# Summary Report Biosparging System Operations at Old Navy Fuel Farm January-June 1998 Naval Air Station, Brunswick, Maine

Contract No. N62472-92-D-1296 Contract Task Order No. 0035



Northern Division
Naval Facilities Engineering Command
10 Industrial Highway
Mail Stop No. 82
Lester, Pennsylvania 19113-2090

Prepared by

EA Engineering, Science, and Technology
The Maple Building
3 Washington Center
Newburgh, New York 12550

# Summary Report Biosparging System Operations at Old Navy Fuel Farm January-June 1998 Naval Air Station, Brunswick, Maine

Contract No. N62472-92-D-1296 Contract Task Order No. 0035

John A. Carnright
CTO Manager

Date

Charles R. Flynn, Jr. Ph.D., P.H.

Program Manager

Data

# **QUALITY REVIEW STATEMENT**

Contract No. N62472-92-D-1296

EA Project Number: 29600.35.3650

Contract Task Order No. 0035

Activity: Naval Air Station, Brunswick, Maine

Description of Report/Deliverable:

Final Summary Report, Biosparging System Operations at Old Navy Fuel Farm, January-June 1998, Naval Air Station, Brunswick, Maine

EA CTO Manager: John A. Carnright

In compliance with EA's Quality Procedures for review of deliverables outlined in the Quality Management Plan, and as per State of Maine Law, this final deliverable has been reviewed for quality by the undersigned Senior Technical Reviewer and reviewed for its technical content by the undersigned State of Maine Certified Professional. The information presented in this report/deliverable has been prepared in accordance with the approved Implementation Plan for the Contract Task Order (CTO) and reflects a proper presentation of the data and/or the conclusions drawn and/or the analyses or design completed during the conduct of the work. This statement is based upon the standards identified in the CTO and/or the standard of care existing at the time of preparation.

Senior Technical Reviewer(s)

| Mille S Balle mille                          | 11-16-98           |
|----------------------------------------------|--------------------|
| Michael S. Battle, P.G.                      | (Date)             |
| Senior Technical Reviewer                    |                    |
| CHARLES WELLOOD, JR.                         |                    |
| L/ F. /// 30 20 891                          | 11-16.78<br>(Date) |
| Charles E. McLeod, Jr., P.E.                 | (Date)             |
| State of Maine Professional Engineer (1997)  |                    |
| PAUL W. HIGGINS HOL. 259                     |                    |
| 1 w work                                     | 11-13-98           |
| Paul W. Higgins, C.G.                        | (Date)             |
| State of Maine Certified Geologist (No. 250) |                    |

# Summary Report Biosparging System Operations at Old Navy Fuel Farm January-June 1998 Naval Air Station, Brunswick, Maine

Contract No. N62472-92-D-1296 Contract Task Order No. 0035

John A. Carnright CTO Manager

Charles R. Flynn, Jr. Ph.D., P.H.

Program Manager

Doto

Date

Revision: FINAL Contents November 1998

# **CONTENTS**

| LI | ST O | F FIGU | URES                                                                                                           | Page |
|----|------|--------|----------------------------------------------------------------------------------------------------------------|------|
|    |      | F TAB  |                                                                                                                |      |
| 1. | BA   | CKGR   | OUND INFORMATION                                                                                               | 1-1  |
|    |      |        | luction                                                                                                        |      |
|    |      |        | Site Geologic Conditions                                                                                       |      |
|    | 1.3  | Sumn   | nary of Biosparging System Operations                                                                          | 1-2  |
|    |      |        | Biosparging System Operation and Maintenance Activities Biosparging System Effectiveness Monitoring Procedures |      |
|    | 1.4  | Repor  | t Organization                                                                                                 | 1-4  |
| 2. | МО   | NITOF  | RING AND SAMPLING PROCEDURES                                                                                   | 2-1  |
|    | 2.1  | Well   | Gauging and Water Quality Monitoring Program                                                                   | 2-1  |
|    |      |        | Well Gauging Methodology                                                                                       |      |
|    |      |        | Point Air Quality Monitoring Program                                                                           |      |
|    |      |        | Overview                                                                                                       |      |
|    |      |        | 2.3.2.1 Summary of Ground-Water Sampling Conducted on 16-18 June 1998                                          | 2-3  |
| 3. | DIS  | CUSSI  | ON OF RESULTS                                                                                                  | 3-1  |
|    | 3.1  | Summ   | nary of Biosparging System Operation and Monitoring Data                                                       | 3-1  |
|    |      |        | Biosparging System Operational Summary                                                                         |      |

|                                                                                                                                                          | <u>Page</u>         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| <ul><li>3.1.3 Water Quality Indicator Parameter Data</li><li>3.1.4 Well Point Headspace Vapor Measurements</li></ul>                                     |                     |
| 3.2 Summary of Ground-Water Sampling Program Results                                                                                                     | 3-3                 |
| 3.2.1 Well Gauging Results                                                                                                                               |                     |
| 3.3 Assessment of Biosparging System Performance                                                                                                         | 3-5                 |
| <ul><li>3.3.1 <i>In Situ</i> Biodegradation Conditions</li></ul>                                                                                         |                     |
| 3.4 Conclusions and Recommendations                                                                                                                      | 3-9                 |
| REFERENCES                                                                                                                                               |                     |
| APPENDIX A: FIELD RECORD OF WATER QUALITY ANALY APPENDIX B: FIELD RECORD OF BIOSPARGING WELL POIL APPENDIX C: FIELD RECORD OF WELL GAUGING, PURGIN FORMS | NT MONITORING FORMS |
| APPENDIX D: LABORATORY REPORT - CHEMICAL ANALY APPENDIX E: FIELD RECORD OF BIOSPARGING SYSTEM C                                                          |                     |
|                                                                                                                                                          |                     |

# LIST OF FIGURES

| Number | <u>Title</u>                                                                                                                                              |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-1    | Site location, Naval Air Station, Brunswick, Maine, U.S. Geological Survey 7.5-minute series topographic quadrangle map.                                  |
| 1-2    | Old Navy Fuel Farm biosparging system, site plan, Naval Air Station, Brunswick Maine.                                                                     |
| 1-3    | Biosparging compressors and injection manifold layout, Old Navy Fuel Farm, Brunswick Naval Air Station, Brunswick, Maine.                                 |
| 3-1    | Interpreted ground-water elevation contour map based on data collected 16 June 1998, Old Navy Fuel Farm, NAS Brunswick, Maine.                            |
| 3-2    | Interpreted dissolved-phase BTEX concentration isopleth map, ground-water samples collected 16-18 June 1998, Old Navy Fuel Farm, NAS Brunswick, Maine.    |
| 3-3    | Interpreted dissolved-phase TPH-GRO concentration isopleth map, ground-water samples collected 16-18 June 1998, Old Navy Fuel Farm, NAS Brunswick, Maine. |
| 3-4    | Interpreted dissolved-phase TPH-DRO concentration isopleth map, ground-water samples collected 16-18 June 1998, Old Navy Fuel Farm, NAS Brunswick, Maine. |
| 3-5    | Ground-water dissolved oxygen concentrations based on data collected 16 June 1998, Old Navy Fuel Farm, NAS Brunswick, Maine.                              |
| 3-6    | Ground-water zones resulting from preferential use of electron acceptors, Old Navy Fuel Farm, Naval Air Station, Brunswick, Maine.                        |
| 3-7    | Historical data trends for dissolved-phase BTEX low concentrations in ground water, Old Navy Fuel Farm, Naval Air Station, Brunswick, Maine.              |
| 3-8    | Historical data trends for dissolved-phase BTEX high concentrations in ground water, Old Navy Fuel Farm, Naval Air Station, Brunswick, Maine.             |
| 3-9    | Historical data trends for dissolved-phase TPH-GRO low concentrations in ground water, Old Navy Fuel Farm, Naval Air Station, Brunswick, Maine.           |

| Number | <u>Title</u>                                                                                                                                     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 3-10   | Historical data trends for dissolved-phase TPH-GRO high concentrations in ground water, Old Navy Fuel Farm, Naval Air Station, Brunswick, Maine. |
| 3-11   | Historical data trends for dissolved-phase TPH-DRO low concentrations in ground water, Old Navy Fuel Farm, Naval Air Station, Brunswick, Maine.  |
| 3-12   | Historical data trends for dissolved-phase TPH-DRO high concentrations in ground water, Old Navy Fuel Farm, Naval Air Station, Brunswick, Maine. |

# LIST OF TABLES

| Number | <u>Title</u>                                                                                                                                                                                  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-1    | Summary of chemical and biological analytical program, Old Navy Fuel Farm, Naval Air Station, Brunswick, Maine.                                                                               |
| 3-1    | Summary of well gauging data collected from 6 January through 30 June 1998, Old Navy Fuel Farm, Naval Air Station, Brunswick, Maine.                                                          |
| 3-2    | Summary of water quality indicator parameter measurements collected from 6 January through 30 June 1998, Old Navy Fuel Farm, Naval Air Station, Brunswick, Maine.                             |
| 3-3    | Summary of field measurements of total volatile hydrocarbons at well point risers from 22 January to 16 June 1998 at the Old Navy Fuel Farm, Naval Air Station, Brunswick, Maine.             |
| 3-4    | Summary of well point riser head space methane, oxygen, and total volatile hydrocarbon concentrations obtained on 16 June 1998 at the Old Navy Fuel Farm Naval Air Station, Brunswick, Maine. |
| 3-5    | Summary of analytical results for ground-water samples collected 16-18 June 1998 at the Old Navy Fuel Farm, Naval Air Station, Brunswick, Maine.                                              |
| 3-6    | Summary of analytical results for ferrous iron and manganese concentrations in ground-water samples collected 16-18 June 1998 at the Old Navy Fuel Farm, Naval Air Station, Brunswick, Maine. |
| 3-7    | Summary of analytical results for ground-water samples collected from 7-8 August 1996 to 18 June 1998 at the Old Navy Fuel Farm, Naval Air Station, Brunswick, Maine.                         |

Page 1-1 November 1998

#### 1. BACKGROUND INFORMATION

#### 1.1 INTRODUCTION

Under Contract No. N62472-92-D-1296, Northern Division, Naval Facilities Engineering Command issued Contract Task Order No. 0035 to EA Engineering, Science, and Technology to perform remedial system operations and monitoring at the Old Navy Fuel Farm, Naval Air Station (NAS) Brunswick, Maine. NAS Brunswick is located south of the Androscoggin River between Brunswick and Bath, Maine (Figure 1-1). The layout of the Old Navy Fuel Farm is shown on Figure 1-2.

NAS Brunswick is an active base for Naval air operations owned and operated by the Federal government through the Department of the Navy. In 1987, NAS Brunswick was placed on the National Priorities List by the U.S. Environmental Protection Agency (EPA) and is currently participating in the Navy's Installation Restoration Program. In August 1996, active *in situ* remediation was instituted utilizing biosparging technology for reduction of petroleum-related hydrocarbon concentrations in site soil and ground water at the Old Navy Fuel Farm.

This report provides the results of biosparging system operating and monitoring data, including ground-water chemical analyses, for the period of 1 January - 30 June 1998.

#### 1.2 SITE HISTORY

The Old Navy Fuel Farm site is located on the northeast portion of NAS Brunswick grounds, and is bounded on the south by Fitch Avenue, on the west by 6th Street, and to the north and east by undeveloped land. The site was previously used as a petroleum bulk storage facility and was decommissioned in 1993. Currently, only components of the biosparging system (originally constructed as a soil vapor extraction/aquifer air sparging system), installed following fuel farm decommissioning, and a storm sewer system exist at the site. Surface grade consists primarily of a level field of grass.

# 1.2.1 Site Geologic Conditions

The topography surrounding NAS Brunswick is somewhat irregular due to erosion of surficial sand deposits by streams. East of NAS Brunswick, the topography becomes more rounded and controlled by bedrock. Topography at NAS Brunswick exhibits little relief. Major rivers in the area which receive drainage from NAS Brunswick consist of the Androscoggin River, located less than 1 mi to the north, and Mere Brook located less than 1 mi to the east-southeast. Drainage from the eastern part of NAS Brunswick, which includes the Old Navy Fuel Farm site, is toward Mere Brook, which discharges to Harpswell Cove about 3 mi to the south. Harpswell Cove is a tidally influenced marine inlet.

Previous hydrogeologic investigations (O'Brien & Gere Engineers, Inc. 1990, 1992) confirmed that the site is underlain by a sandy deposit which is continuous and is, in turn, underlain by a glacio-marine silty clay deposit (designated as the Presumpscot Formation by the Maine Geological Survey). The sandy deposit thickness ranges from 2.5 to 9 ft with thicker zones located at the northwest section of the site. The ground-water table occurs in the sandy zone and flows generally to the south-southeast.

## 1.2.2 Historical Petroleum Bulk Storage and Environmental Investigation Summary

Prior to decommissioning in 1993, the Old Navy Fuel Farm consisted of two separate petroleum bulk storage tank farms which together included nine mounded underground storage tanks. All underground storage tanks, piping, and associated appurtenances were removed during facility decommissioning. The older, western tank farm, included five underground storage tanks, previously identified as underground storage tanks T-101 through T-105. Underground storage tanks T-101 through T-103 were 100,000-gal capacity tanks used for storage of petroleum sludge, unleaded gasoline, and aviation gasoline, respectively. Underground storage tanks T-104 and T-105 were both 25,000-gal capacity tanks used for storage of ethylene glycol. The newer, eastern Fuel Farm included four underground storage tanks, previously identified as underground storage tanks T-202 through T-205. Each of these underground storage tanks was 100,000-gal capacity tanks used for storage of JP-5 fuel.

Previous environmental investigations (O'Brien & Gere Engineers, Inc. 1990, 1992) identified two distinct dissolved-phase hydrocarbon plumes. The first plume was located in the east central portion of the Old Navy Fuel Farm and appeared to originate in the vicinity of former JP-5 underground storage tank T-202. This plume previously extended downgradient from the former location of T-202 toward the south-southeast and consisted primarily of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds. Monitoring well MW-211 (previously designated as MW-J) is currently located adjacent to the former location of T-202.

The second dissolved-phase hydrocarbon plume was located in the north-central portion of the western half of the Old Navy Fuel Farm and appeared to originate in the vicinity of former glycol tanks T-104 and T-105. This plume is characterized principally by BTEX compounds, although at significantly lower concentrations than the eastern hydrocarbon plume. Well point WP-05 is currently located in the vicinity of the former locations of T-104 and T-105.

# 1.3 SUMMARY OF BIOSPARGING SYSTEM OPERATIONS

As currently configured, the biosparging system includes a 1,350 ft<sup>2</sup> treatment building and a network of lateral aeration trenches and vertical sparge wells located to the east of the treatment building as shown on Figure 1-2. Operation of the existing system in a biosparging mode utilizes low-flow air injection from mechanical sparge compressors located in the treatment building to a subsurface network of sparge wells.

The objective of biosparging at the Old Navy Fuel Farm is to aerate the ground water and limited vadose zone within the targeted remedial area to provide sufficient oxygen for indigenous aerobic micro-organisms to metabolize petroleum-related hydrocarbons. Additional monitoring procedures necessary to evaluate the effectiveness of the biosparging system include water quality indicator parameter measurements and a ground-water sampling program. To provide sufficient ground-water sampling locations for biosparging effectiveness monitoring, 21 shallow well points located throughout the targeted remedial area are monitored in addition to 11 site monitoring wells. These monitoring locations are visited bi-monthly throughout the operational period to collect atmospheric and water quality indicator parameter measurements. During this reporting period, from 1 January to 30 June 1998, monitoring well MW-56R was obstructed and could not be gauged or sampled; and well points WP-13 and WP-20 were damaged in June 1998 and could not be gauged or sampled. As indicated in a previous summary report (EA 1998). decreases in ground-water temperature inhibit the *in situ* biodegradation process. In response to decreases in ground-water temperature (<5°C), the biosparging system (western remedial zone) was deactivated during the period from 15 February to 30 March 1998. The eastern remedial zone was deactivated during the period from 15 February to 2 April 1998.

During 1997 and 1998, mechanical (piping and valving) modifications were made to the sparge air delivery system to enhance the control and distribution of sparge air to the western and eastern remediation zones. These improvements included the installation of aboveground PVC valves at 20 selected sparge line locations focused in areas recommended for enhanced biosparging (EA 1997a). Additional system improvements are scheduled for the July-December 1998 operational period, along with repairs to the damaged well points. Installation of additional monitoring wells is also planned.

# 1.3.1 Biosparging System Operation and Maintenance Activities

When operated in the biosparging mode, sparging system flow rates and injection pressures are adjusted to effect the controlled distribution of oxygen to the ground water and limited vadose zone, while minimizing hydrocarbon volatilization effects. In this manner, *in situ* metabolism of hydrocarbons is theoretically maximized, while the release of volatilized hydrocarbons to the atmosphere is minimized. During operations and maintenance visits, technicians monitor injection pressures in conjunction with hydrostatic resistance (as a function of current well gauging data) and re-adjust the system as necessary. A Foxboro TVA-1000 photoionization detector (PID)/flame ionization detector (FID) is used to measure volatile hydrocarbon (TVH) concentrations in the vadose zone soil (via newly installed well points and site monitoring wells) to monitor for potential TVH release to atmosphere. A LandTec Model GA-90 Methane/O<sub>2</sub>/CO<sub>2</sub> analyzer is used to measure well point headspace vapor to assess the effect of the biosparging system on methane and carbon dioxide production, and to indicate differential areas of a reduced/depressed percent oxygen in the vadose zone.

Three sparge compressors (C-1A, C-1B, and C-2) are used to supply pressurized air to the sparge air injection wells. The compressors are operated at low pressure (7-12 psig) and moderate flow (250-300 cfm) sufficient to provide air injection to the sparge wells. The layout of the sparge compressor and injection manifold is provided on Figure 1-3.

# 1.3.2 Biosparging System Effectiveness Monitoring Procedures

Since biosparging is a low pressure in situ aeration process, the effectiveness of biosparging systems may be assessed through verification of increased microbial activity (via direct microbial population studies and/or biodegradation indicator parameters such as electron acceptor and nutrient studies) and confirmation of corresponding reduction in dissolved phase hydrocarbon concentration in ground water. Previous assessments of degrader microbial populations (EA 1997b) have served to document an increase in microbial activity in response to biosparging operations at the Old Navy Fuel Farm. Based on this prior documentation, collection, and analysis of dedicated ground-water samples for microbial populations was discontinued following the 25-26 June 1997 sampling event. The effectiveness of biosparging operations is currently assessed by conducting ground-water sampling to quantify concentrations of petroleumrelated hydrocarbons, iron, and manganese. Well gauging and water quality indicator parameter data (particularly dissolved oxygen, reduction-oxidation potential [redox], and pH) are also obtained to ensure that subsurface conditions are favorable to support a hydrocarbon-degrading microbial population and to assess the effect of the biosparging system on active metabolic processes. Well riser headspace analysis for TVH, methane gas, oxygen, and carbon dioxide concentrations is conducted using field instrumentation to assess the effect of the biosparging system on active metabolic processes.

Chemical analyses of ground-water samples include BTEX, methyl tertiary-butyl ether, total petroleum hydrocarbons (TPH)-Gasoline Range Organics (GRO), and TPH-Diesel Range Organics (DRO).

#### 1.4 REPORT ORGANIZATION

The remaining chapters of this report include presentation and discussion of the following: field monitoring and sampling activities, presentation of biosparging system performance data, summarization of analytical results, and assessment of biosparging system performance/ effectiveness.

Chapter 2, Monitoring and Sampling Procedures, provides a summary of the field activities, including water level gauging; measurement of water quality indicator parameters; monitoring for the presence of volatile hydrocarbons, methane, carbon dioxide, and oxygen; and groundwater sampling.

Chapter 3, Discussion of Results, discusses biosparging system operations and results of the monitoring and sampling activities detailed in Chapter 2.

Page 2-1 November 1998

#### 2. MONITORING AND SAMPLING PROCEDURES

# 2.1 WELL GAUGING AND WATER QUALITY MONITORING PROGRAM

Well gauging and water quality indicator parameter data were collected during each of the 13 site operations and monitoring visits during the January-June 1998 operational period. Field personnel gauged monitoring wells located within the vicinity of the Old Navy Fuel Farm (10 total) and well points (14 of 19 total) to determine depth to ground water and absence/ presence of light, non-aqueous phase liquid (LNAPL). The other 5 of 19 well points (WP-16R, WP-17R, WP-18R, WP-21, and WP-22) are constructed of 1-in. inside diameter PVC pipe and, because of field instrument size, could not be sampled *in situ* for water quality indicator parameters. Immediately following well gauging, water quality indicator parameter data were recorded at these locations. Monitoring well and well point locations are shown on Figure 1-2.

# 2.1.1 Well Gauging Methodology

The time interval for the collection of well gauging data was minimized to the extent possible, thus assuring the representativeness of interpreted ground-water flow data. To measure the concentrations of methane, oxygen, and carbon dioxide in the well riser headspace, a LandTec Model GA-90 methane/O<sub>2</sub>/CO<sub>2</sub> analyzer was used. Well gauging was conducted using a Solinst Model 121 interface meter capable of detecting LNAPL at a minimum thickness of 0.01 ft. The data were recorded on the Field Record of Water Quality Analysis forms provided in Appendix A.

# 2.1.2 Water Quality Indicator Parameter Measurement Methodology

Field measurements of water quality indicator parameters were obtained from January through June 1998 to assess the variation in water quality among well points and monitoring wells. Indicator parameters, including temperature, pH, conductivity, dissolved oxygen, and Eh, were measured *in situ* using a Yellow Springs Instrument Model 600D multiparameter water quality meter. Upon completion of the manufacturer-recommended instrument calibration procedures, field measurements were obtained by immersing the instrument sonde below the water level in each well. *In situ* water quality indicator parameter data were recorded on the Field Record of Water Quality Analysis forms provided in Appendix A.

# 2.2 WELL POINT AIR QUALITY MONITORING PROGRAM

From January through June 1998, bimonthly field monitoring was performed at up to 21 well points for TVH, methane, oxygen, and carbon dioxide concentrations. TVH concentrations were measured at 21 well points to assess the potential effects of active biosparging on partitioning/volatilization of hydrocarbons from ground water to the well point headspace. Increases in TVH concentration in well-point riser headspace may be interpreted as excessive

aeration of the saturated zone. Upon opening the top of each well point, a Foxboro TVA-1000 PID/FID was used to monitor the presence and concentration of TVH. These data were recorded on the Field Record of Biosparging Well Point Monitoring forms provided in Appendix B.

To monitor for the presence of methane in well point headspace, a Landtec Model GA-90 methane detector was used to directly measure percent methane and percent oxygen. A decrease in methane concentration may be interpreted as a reduction in anaerobic microbial activity within the remedial area. These data were recorded on the Field Record of Biosparging Well Point Monitoring forms provided in Appendix B.

#### 2.3 GROUND-WATER SAMPLING PROGRAM

#### 2.3.1 Overview

The effectiveness of the biosparging system is assessed by verifying long-term reduction in dissolved-phase hydrocarbon concentrations in site ground water. Baseline ground-water sampling (August 1996) and interim ground-water sampling (December 1996, June and December 1997) were conducted to provide data relative to potential biosparging system effectiveness at the Old Navy Fuel Farm. The ground-water sampling program includes sample collection and chemical analyses to assess the concentrations of dissolved-phase hydrocarbons in shallow ground water.

One ground-water sampling event was conducted during the reporting period from 16 to 18 June 1998. Sampling was conducted at 9 monitoring wells and 19 selected well points located at or in the vicinity of the Old Navy Fuel Farm. The monitoring wells included in the ground-water sampling event were MW-44, MW-49, MW-51, MW-54, MW-58, MW-61R, MW-62, MW-211, and MW-213. Nineteen well points were sampled during the ground-water sampling program (WP-1 through WP-12, WP-14, WP-15, WP-16R, WP-17R, WP-18R, WP-21, and WP-22). Well Points WP-13, WP-19, and WP-20 were destroyed during NAS Brunswick base activities in early June 1998 and were unavailable for the ground-water sampling event. Monitoring well MW-56R was obstructed during this reporting period and could not be sampled. Sampling methodologies performed in the field are discussed below. A summary of the ground-water sampling and analysis program is provided in Table 2-1.

#### 2.3.2 Sampling Methodology

A complete round of well gauging and measurement of water quality indicator parameters was performed on 16 June 1998. Following the gauging event, monitoring wells and well points were sampled. Monitoring wells were sampled using "low-flow" techniques consistent with those employed during the base-wide Long-Term Monitoring Program. A standard operating procedure was developed for this program based on draft guidance prepared by EPA Region I (U.S. EPA 1994) which conforms with the procedures described in the long-term monitoring plan (ABB-ES 1994). This technique incorporates the use of variable speed submersible pumps (Grundfos Rediflo) and clean, dedicated polypropylene discharge tubing. Following the gauging

Page 2-3 November 1998

task, well purging is initiated at a low-flow pumping rate during which water quality indicator parameters, flow rate, and drawdown are monitored and recorded at 3- to 5-minute intervals until stabililization of water quality parameters is achieved.

Well points were purged using new, dedicated polyethylene tubing and an ISCO Model 2700 peristaltic pump with dedicated 3/8-in. outer diameter Masterflex Silicone C-Flex® tubing. The pumping system was operated until all well points were purged dry. Well points were then allowed to recharge overnight and were sampled within the 24-hour interval following purging. Well point ground-water sampling was conducted using the ISCO peristaltic pump and polyethylene tubing as described for well point purging operations.

# 2.3.2.1 Summary of Ground-Water Sampling Conducted on 16-18 June 1998

The fourth interim ground-water sampling event, completed during active biosparging, was conducted on 16-18 June 1998 at 19 of 22 well points, 5 of 7 ground-water monitoring wells located within the remediation zone (MW-44, MW-54, MW-61R, MW-211, and MW-213), and 4 perimeter monitoring wells (MW-49, MW-51, MW-58, and MW-62). Prior to sampling, each well was gauged to determine the absence/presence of LNAPL, depth to ground water, and depth to bottom using a Solinst Model 121 interface meter graduated at 0.01-ft intervals. Well gauging confirmed the absence of measurable LNAPL at all locations. The Field Record of Well Gauging, Purging, and Sampling forms completed during the sampling event are provided in Appendix C.

Ground-water samples were submitted to the laboratory under two sample delivery groups. One ground-water sample was collected from each of the monitoring wells/well points (28 total locations); in addition, duplicate ground-water samples (3 total) were collected from well points WP-4 and WP-6, and monitoring well MW-44. Two equipment rinsate blanks were collected by pouring de-ionized water through the sampling equipment (i.e., dedicated polypropylene bailers/ ISCO polyethylene tubing) and into the appropriate sample containers. To assess the potential for contamination during sample transport, two trip blanks were analyzed, one per sample delivery group. Aqueous samples were shipped under chain-of-custody to the laboratory via overnight courier upon completion of each sample delivery group. Samples were submitted to EA Laboratories of Sparks, Maryland. Ground-water (including duplicate) samples and rinsate blanks were analyzed for BTEX and methyl tertiary-butyl ether (MTBE) by EPA Method 602, TPH-GRO by Maine Department of Human Services (DHS)—Health and Environmental Testing Laboratory (HETL) Method 4.2.17, and TPH-DRO by Maine DHS-HETL Method 4.1.25. Trip blank samples were analyzed only for BTEX and MTBE by EPA Method 602. The analytical narrative and Form I data are provided in Appendix D.

Following sample collection for offsite laboratory analyses, an additional grab sample was collected to permit onsite colorimetric testing for ferrous iron and manganese. Following acidification with HCL and vacuum filtration to remove particulate matter, a Hach Model DR-2000 spectrometer was used to measure concentrations of ferrous iron and manganese in the filtrate by Hach Methods 8146 and 8034, respectively.

Table 2-1 November 1998

TABLE 2-1 SUMMARY OF CHEMICAL AND BIOLOGICAL ANALYTICAL PROGRAM OLD NAVY FUEL FARM, NAVAL AIR STATION, BRUNSWICK, MAINE

| Chemical Analyses                                                                                                                                                                                                                                                                                                                                                                             |                              |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                       | Method                       |  |  |  |
| BTEX and MTBE                                                                                                                                                                                                                                                                                                                                                                                 | EPA 602                      |  |  |  |
| TPH-GRO                                                                                                                                                                                                                                                                                                                                                                                       | Maine DHS-HETL Method 4.2.17 |  |  |  |
| TPH-DRO                                                                                                                                                                                                                                                                                                                                                                                       | Maine DHS-HETL Method 4.1.25 |  |  |  |
| Ferrous Iron                                                                                                                                                                                                                                                                                                                                                                                  | HACH Method 8146             |  |  |  |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                     | HACH Method 8034             |  |  |  |
| Methane (vapor phase)                                                                                                                                                                                                                                                                                                                                                                         | Landtec GA-90                |  |  |  |
| NOTE: BTEX = Benzene, toluene, ethylbenzene, and total xylenes.  DRO = Diesel Range Organics.  GRO = Gasoline Range Organics.  LOP = Laboratory operating procedure.  MEDEP = Maine Department of Environmental Protection MTBE = Methyl tertiary-butyl ether.  TPH = Total petroleum hydrocarbons.  DHS = Department of Human Services.  HETL = Health and Environmental Testing Laboratory. |                              |  |  |  |

Revision: FINAL Page 3-1 November 1998

#### 3. DISCUSSION OF RESULTS

This chapter summarizes the Old Navy Fuel Farm biosparging system field monitoring, analytical results, system operations, and monitoring data for the period 1 January through 30 June 1998. An assessment of in situ biodegradation in progress at the Old Navy Fuel Farm is provided based on biosparging system monitoring data (January-June 1998) and results of ground-water sampling conducted during June 1998.

# 3.1 SUMMARY OF BIOSPARGING SYSTEM OPERATION AND MONITORING DATA

Field personnel performed a total of 13 operations and maintenance and monitoring site visits during the period from 1 January to 30 June 1998. Site visits were conducted on 6 and 22 January; 5 and 15 February; 2 and 18 March; 14 and 25 April; 7 and 20-21 May; and 9, 16, and 30 June. Biosparging system performance and monitoring data are provided in the Field Record of Biosparging System Operations forms (Appendix E). Tasks performed during each site visit included:

- Monitoring of biosparging system operational parameters
- · Gauging of water levels and measurement of water quality indicator parameters at monitoring wells and well points
- Field analysis of well point head space TVH, methane, oxygen, and carbon dioxide concentrations
- Inspection of biosparging system components and remedial area for evidence of air injection
- Inspection of biosparging system components for functionality; performance of repairs as necessary.

# 3.1.1 Biosparging System Operational Summary

The Old Navy Fuel Farm biosparging system was activated on 8 August 1996 using the injection of compressed air in both lateral aeration trenches and sparge wells. Lateral aeration was subsequently suspended, and enhancements to the sparge well network were accomplished. Currently, the system operates through a network of vertical sparge wells utilizing low-flow air injection. Ambient air injection is accomplished by sparge compressors C-1A, C-1B, and C-2 which supply compressed air (approximately 250-300 cfm each at 7-12 psig) to the eastern and western sparge well networks.

During operations and maintenance visits, injection pressures and flow rates were measured at field service vaults using dedicated gauges or were confirmed by audio/visual evidence (i.e., obvious surface water/service vault water aeration and audible supply line air flow). During this reporting period, all three sparge compressors were operated continuously except due to mechanical failure and/or during site activities requiring temporary de-activation of the biosparging system. The biosparge system was deactivated on 15 February due to low (<5°C) ground-water temperatures. On 30 March, the western remedial zone biosparge system was reactivated; and on 2 April, the eastern remedial zone biosparge system was reactivated.

# 3.1.2 Monitoring Well and Well Point Gauging Data

Field personnel gauged 21 well points and 10 shallow monitoring wells located at and in the vicinity of the Old Navy Fuel Farm during 13 operations and monitoring site visits, except when prevented by weather conditions and/or physical obstructions. Well point WP-19 was not gauged because it was destroyed during July 1997. Gauging was performed at MW-46 during February and May 1998 only. MW-49 was substituted as an alternative downgradient well location for MW-46. Monitoring well MW-56R was physically blocked and not gauged during the reporting period. Monitoring well MW-56R is scheduled for repair/replacement during the July-December 1998 operations period. A summary of the well gauging data for the 6-month reporting period is provided in Table 3-1. Review of the gauging data indicates that the water table exhibited a gradual increase in elevation during the period January-June 1998. LNAPL was not detected in any monitoring wells or well points during the gauging events.

# 3.1.3 Water Quality Indicator Parameter Data

Field personnel measured water quality indicator parameters in 21 well points and 10 shallow monitoring wells located at and in the vicinity of the Old Navy Fuel Farm during the 13 site visits. Variations in number of wells monitored per visit are attributable to weather-related restrictions and/or physical obstructions. The dissolved oxygen concentration in ground water, as measured at well points located within the treatment area, increased from an average of 6.02 mg/L in early January 1998 to >10 mg/L at 20 locations by early April 1998. A decreasing trend in the dissolved oxygen concentration occurred from mid-April through June 1998. The average temperature of ground water gradually increased from 8.57°C on 6 January to 15.60°C on 30 June 1998. The monthly average pH, conductivity, and redox values remained consistent throughout the reporting period. A summary of water quality indicator parameter data collected during the site visits is provided in Table 3-2.

# 3.1.4 Well Point Headspace Vapor Measurements

Field personnel field measured well point riser headspace for TVH concentration monthly during the reporting period. TVH headspace analysis was conducted once per month in January, February, March, April, May, and June 1998. Headspace analysis was not conducted during the 7 May 1998 site visit due to heavy rain; partial readings were obtained on 25 April 1998 due to rain conditions affecting PID instrument response. Variations in instrument response by FID

compared to PID occur in the presence of methane and non-methane volatile hydrocarbons. FID instrumentation responds to the combined parameters of methane and other volatile hydrocarbons, while the PID responds to non-methane (TVH) compounds. Elevated FID responses observed without corresponding PID responses were assumed to be indicative of the presence methane gas. During the reporting period, TVH concentrations greater than 10 ppm<sub>v</sub> were observed in 13 well point risers. A summary of the well point headspace monitoring of FID TVH concentrations and PID TVH concentrations is provided in Table 3-3.

On 16 June 1998, prior to the ground-water sampling event, the presence of FID TVH concentrations and PID TVH concentrations and oxygen was quantitatively assessed using a Landtec GA-90 methane detector. The instrument directly measured methane and oxygen headspace concentrations as percent air. Methane was detected in 4 of the 14 well points (WP-02, WP-05, WP-07, and WP-12) at concentrations ranging from 0.1 percent (WP-5) to 2.7 percent (WP-02). Percent oxygen measurements ranged from 12.7 percent (WP-12) to 20.8 percent (WP-01,WP-03,WP-06, WP-07, WP-09, WP-10, WP-11, and WP-14). A summary of FID TVH concentrations, PID TVH concentrations, and percent methane/oxygen results from the headspace analysis from 16 June 1998 are provided in Table 3-4.

#### 3.2 SUMMARY OF GROUND-WATER SAMPLING PROGRAM RESULTS

Ground-water sampling was conducted at the Old Navy Fuel Farm during the period 16-18 June 1998 to assess ground-water conditions after approximately 24 months of active biosparging. Prior to the ground-water sampling event, water level gauging and water quality indicator parameter data were collected from the shallow monitoring wells located at and in the vicinity of the Old Navy Fuel Farm (MW-43, MW-44, MW-49, MW-51, MW-54, MW-58, MW-61R, MW-62, MW-211, and MW-213) and from 19 existing well points. Monitoring well MW-56R was not gauged or sampled due to physical obstruction.

Ground-water samples (28 total) were collected from 9 monitoring wells and 19 well points. Well points WP-13, WP-19, WP-20 and monitoring well MW-43 were not sampled. WP-13 and WP-20 were inaccessible due to bent casings, WP-19 was destroyed, and MW-43 yielded insufficient volume for representative ground-water samples.

Ground-water samples were analyzed onsite for ferrous iron and manganese using a Hach Model DR-2000 spectrometer. Samples from the monitoring wells and well points were shipped to EA Laboratories and analyzed for BTEX and MTBE by EPA Method 602, TPH-GRO by Maine DHS-HETL Method 4.2.17, and TPH-DRO by Maine DHS-HETL Method 4.1.25.

# 3.2.1 Well Gauging Results

Prior to ground-water sampling, field personnel gauged 10 monitoring wells located at and in the vicinity of the Old Navy Fuel Farm and 14 of 19 existing well points on 16 June 1998 to determine depth to water and note absence/presence of LNAPL. The other 5 of 19 well points (WP-16R, WP-17R, WP-18R, WP-21, and WP-22) are of small diameter and were gauged for

Page 3-4 November 1998

depth to water only. Monitoring well MW-56R was not gauged due to physical obstruction of the well riser. LNAPL was not observed in any of the monitoring wells or well points. The ground-water elevation in the 10 monitoring wells ranged from 62.37 ft mean sea level in MW-49 to 73.07 ft mean sea level in MW-062. Table 3-1 provides a summary of Old Navy Fuel Farm gauging data for the reporting period.

Figure 3-1 provides the interpreted water table elevations for the 16 June 1998 gauging event. Ground-water flow is interpreted to be to the southeast. The overall ground-water flow direction observed during the 16 June 1998 gauging event, when the biosparging system was active, was similar to that observed during the August 1996 gauging event (prior to activation of the biosparging system).

# 3.2.2 Ground-Water Sampling Results

A total of 28 ground-water samples were collected from 9 monitoring wells (MW-44, MW-49, MW-51, MW-54, MW-58, MW-61R, MW-62, MW-211, and MW-213) and 19 well points (WP-01 through WP-12, WP-14, WP-15, WP-16R, WP-17R, WP-18R, WP-21, and WP-22) from 16 to 18 June 1998. Analytical results for the June 1998 ground-water sampling event are summarized in Table 3-5. Figures 3-2 through 3-4 provide interpreted concentration isopleths for total BTEX, TPH-GRO, and TPH-DRO concentrations in ground water, respectively.

Total BTEX was reported in 21 of 28 ground-water samples at concentrations ranging from 1  $\mu$ g/L (WP-08 and WP-11) to 8,352  $\mu$ g/L (WP-05). Total BTEX was reported at a concentration greater than 100  $\mu$ g/L in 5 of 28 samples: WP-05 (8,352  $\mu$ g/L), WP-17R (189 $\mu$ g/L), WP-21 (547  $\mu$ g/L), WP-22 (1,280  $\mu$ g/L), and MW-211 (2,748  $\mu$ g/L). Benzene was reported in 4 of 28 samples at concentrations ranging from 41  $\mu$ g/L (WP-21) to 150  $\mu$ g/L (WP-22). Toluene was reported in 15 of 28 samples. Ethylbenzene was reported in 8 of 28 samples. Total xylenes were the most frequently detected compound, reported in 21 of 28 samples. No volatile organic compounds were reported in the equipment rinsate blanks or trip blanks.

MTBE was detected in only 2 of 28 ground-water samples at concentrations of 4  $\mu$ g/L (MW-58) and 5  $\mu$ g/L (MW-61). MTBE was not detected in the equipment rinsate blanks or the trip blank.

TPH-GRO were reported in 22 of 28 ground-water samples at concentrations ranging from 21  $\mu$ g/L (MW-51) to 15,000  $\mu$ g/L (WP-05). Concentrations of TPH-GRO were reported above 1,000  $\mu$ g/L in 7 of 28 samples: WP-02 (2,400  $\mu$ g/L), WP-05 (15,000  $\mu$ g/L), WP-07 (1,800  $\mu$ g/L), WP-17R (1,900  $\mu$ g/L), WP-21 (3,800  $\mu$ g/L), WP-22 (3,900  $\mu$ g/L), and MW-211 (4,400  $\mu$ g/L). TPH-GRO were detected in 1 of 2 equipment rinsate blanks at a concentration of 22  $\mu$ g/L. As indicated in Table 3-5, GRO concentrations in five well points (WP-02, WP-05, WP-17R, WP-21, and WP-22) were reported as outside the original calibration range and received a laboratory qualifier ("E"). The original laboratory instrument calibration curve was acceptable, but too wide to provide good definition of low concentration sample results. Thus,

the curve was reproduced, eliminating the two highest calibration standards. Further dilution of the high concentration results was not performed due to holding time limitations. These results are presented as ">."

TPH-DRO were reported in 27 of 28 ground-water samples at concentrations ranging from 61  $\mu$ g/L (MW-213) to 10,000  $\mu$ g/L (WP-22). Concentrations of TPH-DRO were reported greater than 1,000  $\mu$ g/L at 6 locations: WP-02 (4,700  $\mu$ g/L), WP-04 (2,000  $\mu$ g/L), WP-05 (1,600  $\mu$ g/L), WP-17R (2,500  $\mu$ g/L), WP-21 (1,200  $\mu$ g/L), and WP-22 (10,000  $\mu$ g/L). A TPH-DRO concentration of 76  $\mu$ g/L was reported in upgradient well MW-62, suggesting the potential for non-petroleum related hydrocarbons to be detected in the TPH-DRO analytical method. TPH-DRO was detected in 1 of 2 equipment rinsate blanks at a concentration of 290  $\mu$ g/L.

The reported concentrations of total BTEX, MTBE, TPH-GRO, and TPH-DRO for the duplicate ground-water samples collected at WP-04, WP-06, and MW-44 indicated general agreement with analytical results for the original samples, with the exception of WP-06-DUP which exhibited 150  $\mu$ g/L TPH-GRO result compared to the WP-06 result of <10U  $\mu$ g/L.

A Hach Model DR-2000 spectrometer was used for analysis of ferrous iron and manganese concentrations in the ground-water samples collected from 19 of 22 well points. Samples were not collected from well points WP-13, WP-19, and WP-20 due to well point damage. Ferrous iron concentrations ranged from 0.07 mg/L in well point WP-16R to 3.24 mg/L in WP-21. Manganese concentrations ranged from non-detect in 2 well points (WP-9 and WP-12) to 0.3 mg/L in WP-1 and WP-10. There were no spatial distribution patterns observed for ferrous iron or manganese at the site. A summary of the ferrous iron and manganese data is provided in Table 3-6.

#### 3.3 ASSESSMENT OF BIOSPARGING SYSTEM PERFORMANCE

Indicator parameters used to assess biosparging system performance during the reporting period include: water quality indicators (including temperature, pH, conductivity, dissolved oxygen, and Eh), ground-water sampling results, and well point headspace (vapor) concentrations. It should be noted that variation in some or all (with the probable exception of methane gas and dissolved oxygen) indicator parameters, relative to the previous reporting period (June-December 1997), may be attributable to seasonal effects.

### 3.3.1 In Situ Biodegradation Conditions

Ground-water parameters and vapor monitoring data collected prior to biosparging system activation (i.e., August 1996) at the Old Navy Fuel Farm were indicative of advanced anaerobic (reduced) environmental conditions as evidenced by dissolved oxygen concentrations of less than 0.5 mg/L in 9 of 18 well points and less than 1.0 mg/L in 16 of 18 well points. Only 2 well points, WP-09 and WP-20, exhibited dissolved oxygen concentrations greater than 1.0 mg/L

Page 3-6

### EA Engineering, Science, and Technology

(5.4 and 3.1 mg/L, respectively) during the baseline (pre-biosparging) sampling event. Anaerobic conditions prior to biosparging were also evidenced by elevated methane gas concentrations in 13 of 28 well points.

Following approximately 24 months of active biosparging, ground water throughout the Old Navy Fuel Farm remedial area exhibits characteristics representative of active *in situ* biodegradation of petroleum hydrocarbons by heterotrophic micro-organisms. The capacity of the biosparging system to effectively distribute oxygen to ground water throughout the remedial area was substantially improved as a result of equipment modifications completed prior to and during this reporting period. Additional improvements are planned during the July-December 1998 reporting period. Improved performance is evidenced by sustained elevated levels of dissolved oxygen concentrations at nearly all well point locations during periods when the system is operational. The spacial distribution of dissolved oxygen concentrations collected during the June 1998 sampling event are presented in Figure 3-5.

The pH and redox potential field indicator parameter results for ground water suggest that aerobic biodegradation conditions continue to exist in the remedial area. Ground-water pH measured during the baseline sampling event (August 1996) at the Old Navy Fuel Farm remedial area was significantly lower than pH values typical for other sites at NAS Brunswick (i.e., approximately 6.0-7.0). The average pH prior to activation of the biosparging system was 4.87. The average pH for the reporting period was 6.61. The average pH measured at well point and monitoring well locations during the June 1998 ground-water sampling event was 7.26, indicating that pH at the Old Navy Fuel Farm has increased to more typical NAS Brunswick area values.

Increased redox potential is associated with conversion to aerobic microbial processes (NFESC 1996). However, the range of redox potentials and average redox potential measured during the June 1998 sampling event (-160 to 377 mV and 124 mV, respectively) was still below values typical in environments where engineered aerobic biodegradation has been fully established (usually greater than 750 mV, normalized for pH of 7 and temperature of 25°C).

Concurrent with activation of the biosparging system in August 1996, methane gas was detected at 13 of 20 well points at concentrations ranging from 0.1 to >90.0 percent. In June 1998, methane gas was detected in 4 of 14 well points (WP-02, WP-05, WP-07, and WP-12) at concentrations ranging from 0.1 to 2.7 percent. Well point WP-02 is not located within the effective biosparging area of influence.

The presence of elevated methane concentrations in well point riser headspace observed during the baseline sampling event (August 1996) indicates that anaerobic conditions existed throughout the Old Navy Fuel Farm biosparging area prior to the introduction of oxygen. Results of the June 1998 sampling event and well point head space monitoring (which reported significant reductions and/or elimination of methane gas) suggest that operation of the biosparging system has established aerobic biodegradation conditions throughout the biosparging area.

Page 3-7 November 1998

Figure 3-6 provides an idealized illustration of microbial ground-water environments in the vicinity of a petroleum spill resulting from preferential use of electron acceptors. Facultative bacteria (i.e., able to metabolize hydrocarbons in both aerobic and anaerobic environments) utilize available electron acceptors preferentially according to energy availability per mole, beginning with oxygen (aerobic respiration) and proceeding in order through nitrate reduction, iron reduction, sulfate reduction, and then to methanogenesis (carbon dioxide reduction). Thus, the presence of methane often suggests that all other available electron acceptors have been exhausted and/or are not able to be utilized by the indigenous microbes (NFESC 1996).

Manganese and ferric iron (Fe<sup>+3</sup>) are often used as alternate electron acceptors to oxygen under anaerobic conditions. Increases in the concentrations of manganese and/or ferric iron may be indicative of reduced utilization rates associated with conversion from anaerobic to aerobic microbial activity. Based on the June 1998 sampling data, the manganese concentrations do not appear to have changed significantly during the reporting period, and were not significant indicators in previous sampling events (August 1996 - December 1997). Ferric iron is not directly measured for microbial assessments since it is not possible to quantify its availability to the microbial population without knowing its degree of crystallinity. Therefore, its reduced form, or ferrous iron (Fe<sup>+2</sup>), is measured. An increase in ferrous iron concentration is an indication that iron reduction is likely occurring (NFESC 1996). Alternately, if ferrous iron concentrations are depleted, it can be inferred that dilution and/or oxidation may be taking place in the absence of continued ferrous iron production associated with anaerobic conditions. Based on the June 1998 sampling data, the ferrous iron concentrations have not changed significantly during the reporting period.

Water quality indicator parameter data, and nutrient and electron acceptor data collected during the June 1998 sampling event suggest that the environmental conditions necessary to support aerobic biodegradation are evidenced throughout the treatment area at the Old Navy Fuel Farm. Ground-water dissolved oxygen concentrations throughout the remedial area have been increased to above threshold levels (i.e., greater than 2.0 mg/L) for aerobic metabolism.

The ground water pH has stabilized above the minimum threshold for aerobic metabolism and at levels typical of the NAS Brunswick area. Similarly, the redox potential of site ground water has increased commensurate with the establishment of aerobic processes. Through the continuation of the biosparging process, dissolved oxygen, the primary electron acceptor, will remain abundant. These conditions will facilitate the aerobic degradation of petroleum constituents at the Old Navy Fuel Farm.

It should be noted that seasonal decreases in ground-water temperature (average temperature of 4.74°C, as measured 30 December 1997 through 18 March 1998) are likely to inhibit the *in situ* biodegradation process. Anticipating this effect, the biosparging system was deactivated during this period. The system was reactivated on 2 April 1998, when ground-water temperatures returned to acceptable levels (i.e., > 5.0°C).

Page 3-8 November 1998

# 3.3.2 Assessment of Dissolved-Phase Hydrocarbon Removal

Analytical data collected during August 1996 (baseline), December 1996, June 1997, December 1997, and June 1998 ground-water sampling events at the Old Navy Fuel Farm indicate that continued reductions in the dissolved-phase BTEX, MTBE, TPH-GRO, and TPH-DRO concentrations have occurred. Table 3-7 provides an historical summary of analytical results for the August and December 1996, June and December 1997, and June 1998 sampling events. Concentration isopleths for the June 1998 sampling event are provided on Figures 3-2 through 3-4.

The June 1998 ground-water data indicate a slight increase in total BTEX concentrations compared to the December 1997 ground-water sampling event at 12 of 19 well points (WP-1 through WP-9, WP-15, WP-18, and WP-22) and three monitoring wells (MW-51, MW-54, and MW-58). Six locations (WP-10, WP-14, MW-44, MW-61R, MW-62, and MW-213) exhibited no change in total BTEX concentrations compared to December 1997. BTEX was not detected at 7 of 28 sampling locations (WP-10, WP-14, MW-44, MW-49, MW-61R, MW-62, and MW-213). Figures 3-7 and 3-8 provide graphical illustrations of historical data trends for dissolved-phase BTEX concentrations in ground water, suggesting a seasonal pattern of higher concentrations in summer compared to winter and, despite seasonal fluctuations, an overall progressive reduction in BTEX concentrations in ground water compared to pre-remedial (baseline) ground-water data (August 1996). As indicated on Figure 3-2 (BTEX isopleth map) the two areas exhibiting the highest concentrations of dissolved-phase BTEX are localized in the vicinity of well point WP-5 in the eastern remedial zone, and in the vicinity of monitoring well MW-211 and well point WP-5 in the eastern remedial zone. These areas are currently the focus of ongoing biosparging system enhancements/expansion.

MTBE was undetected in site ground-water in 19 of 19 well points, and in 7 of 9 monitoring wells, for the June 1998 sampling event. Monitoring wells MW-58 and MW-61R exhibited concentrations of 4  $\mu$ g/L and 5  $\mu$ g/L, respectively. These results are consistent with the historical trend for this parameter since December 1996 (Table 3-7). No ground-water samples collected during June 1998 exhibited MTBE concentrations exceeding the MEDEP stringent cleanup goal.

The frequency of detection of TPH-GRO for the June 1998 sampling event remained consistent with results from the December 1997 sampling event with 22 of 28 samples exhibiting TPH-GRO compounds. Similarly, the number of samples exhibiting TPH-GRO concentrations greater than 1,000  $\mu$ g/L remained consistent from December 1997 (6 of 26) to June 1998 (7 of 28). As indicated in Table 3-7, several areas of significant reduction in TPH-GRO concentrations are evident. In the eastern remedial zone, TPH-GRO concentrations in WP-4 decreased from 6,800  $\mu$ g/L in December 1997 to 180  $\mu$ g/L in June 1998; TPH-GRO in WP-7 decreased from 11,000  $\mu$ g/L to 1,800  $\mu$ g/L; TPH-GRO in MW-211 decreased from 19,000  $\mu$ g/L to 4,400  $\mu$ g/L; and TPH-GRO in WP-08 decreased from 560  $\mu$ g/L to 70  $\mu$ g/L. In the western remedial zone, TPH-GRO concentrations in WP-2 decreased from 18,000  $\mu$ g/L in December 1997 to 2,400  $\mu$ g/L

in June 1998; and TPH-GRO concentrations in WP-01 decreased from 140  $\mu$ g/L to 45  $\mu$ g/L. These order of magnitude reductions confirm a progressive trend toward reduction in site TPH-GRO concentrations in ground water.

Eight ground-water sampling locations exhibited reductions in TPH-GRO concentrations from previous (1996-1997) values above the MEDEP stringent clean-up goal of 50  $\mu$ g/L, to concentrations below 50  $\mu$ g/L or non-detect concentrations. These locations include WP-03, WP-09, WP-12, and MW-211 in the eastern remedial zone and WP-01, WP-15, MW-54, and MW-61R in the western remedial zone. Following the June 1998 sampling event, site-wide TPH-GRO reductions were reported in 17of 28 ground-water samples, while 6 locations reported non-detect concentrations. TPH-GRO was not detected in samples collected from perimeter monitoring wells MW-49, MW-58, MW-61R, or MW-62. Eight of 9 monitoring wells exhibited TPH-GRO concentrations below the MEDEP stringent clean-up goal of 50  $\mu$ g/L. MW-211 exhibited 4,400  $\mu$ g/L TPH-GRO for the June 1998 ground-water sampling event. As indicated on Figure 3-5, TPH-GRO concentrations above 1,000  $\mu$ g/L were reported in the northwest, central, and southeast areas of the site with the highest concentration occurring at WP-5 (15,000  $\mu$ g/L). Figures 3-9 and 10 provide graphical illustrations of historical data trends for TPH-GRO concentrations in ground water at the Old Navy Fuel Farm with the overall reductions in ground-water concentration evident since December 1996.

Twenty-six of 28 sampling locations exhibited concentrations of TPH-DRO exceeding the MEDEP Stringent clean-up goal of 50  $\mu$ g/L, exceptions being MW-58 and MW-213. However, ground-water sampling results from June 1998 show continued reductions in the TPH-DRO concentrations compared to August 1996 (baseline) data. Reductions in TPH-DRO concentrations were observed in samples at 17 of 28 sampling locations compared to December 1997.

Figures 3-11 and 3-12 provide graphic illustrations of historical data trends in TPH-DRO concentrations in ground water indicating a progressive reduction since December 1996. TPH-DRO concentrations above 1,000  $\mu$ g/L are exhibited in the central-eastern and northwestern remediation zones of the site. TPH-DRO were also observed in the perimeter monitoring wells (MW-49, MW-51, and MW-62) at concentrations of 130  $\mu$ g/L, 64  $\mu$ g/L, and 76  $\mu$ g/L, respectively. The highest TPH-DRO concentration was observed at WP-22 (10,000  $\mu$ g/L).

#### 3.4 CONCLUSIONS AND RECOMMENDATIONS

Reductions in dissolved-phase hydrocarbon concentrations have been observed since the commencement of biosparging activity in 1996. The reduction may be attributable to the combined effects of volatilization and increased *in situ* biodegradation, both resulting from operation of the Old Navy Fuel Farm biosparging system. Although existing data are not sufficient to directly quantify the fraction of hydrocarbon reduction attributable to volatilization or biodegradation, inferences may be made for selected constituents based on chemical-specific vapor pressure and biodegradability. MTBE, BTEX, and TPH-GRO for which the most significant concentration reductions have been observed, are the most volatile analytes included

Page 3-10 November 1998

in the sampling program. Although BTEX compounds are known to be readily biodegradable, MTBE is generally considered to be recalcitrant (Mormile et al. 1994). Therefore, the reduction in MTBE concentration may be attributable principally to volatilization. Most MTBE removal was observed early (i.e., by December 1996) in the biosparging system operational period, an operational period favoring volatilization of compounds characterized by relatively high vapor pressure. MTBE removal during the early biosparging operational period (i.e., December 1996) was not associated with a corresponding increase in BTEX removal. Continued *in situ* biodegradation of petroleum hydrocarbons has been evidenced by significant decreases in total BTEX, TPH-GRO, and TPH-DRO concentrations throughout the remedial area.

The combined effects of volatilization and biodegradation appear to have been contributing factors in the reduction of dissolved-phase hydrocarbons from the Old Navy Fuel Farm. Less volatile compounds have persisted, but demonstrate a trend toward reduction in concentration in response to the *in situ* biosparging process now employed. With the continued effective delivery of dissolved oxygen to the shallow ground water, and continued aerobic microbial activity, it is anticipated that less volatile compounds as well as the remaining volatile constituents will undergo sustained aerobic biodegradation.

As indicated in Section 3.2.2, sustained dissolved-phase hydrocarbon removal has resulted in significant progress toward MEDEP clean-up criteria. In order to enhance the effectiveness of the biosparging system, remedial system modifications/improvements have been initiated, including:

- Expansion of the SVE/AAS network to more fully encompass the two principal areas of concern exhibiting elevated TPH-GRO and TPH-DRO.
- Installation of control valving in the existing AAS network to increase remedial efficiency.
- Performance of a 2-month dewatering pilot study to determine the potential
  effectiveness of localized dewatering strategy in the vicinity of the currently
  flooded SVE lateral trenches, potentially allowing for future SVE system
  operation.
- Installation of up to 6 new/replacement monitoring wells and/or well points to assist in monitoring the progress/effectiveness of the biosparging system.

System modifications will be performed during the July-December 1998 operational period. The December 1998 ground-water sampling event will incorporate data from new monitoring wells and well points, and may serve to demonstrate the effectiveness of the system enhancements now underway.

# TABLE 3-1 SUMMARY OF WELL GAUGING DATA COLLECTED FROM 6 JANUARY THROUGH 30 JUNE 1998 OLD NAVY FUEL FARM, NAVAL AIR STATION BRUNSWICK, MAINE

| Gauging<br>Data | Well Elevation<br>(ft MSL) | Depth to<br>Water (ft) | Depth to<br>LNAPL (ft) | LNAPL<br>Thickness (ft) | Water Table<br>Elevation (ft) <sup>(a)</sup> |
|-----------------|----------------------------|------------------------|------------------------|-------------------------|----------------------------------------------|
| Data            | (It MOL)                   |                        | WP-1                   | Tillekiless (it)        | Elevation (II)                               |
| 06 JAN 1998     | 74.84                      | 4.96                   | 4.96                   | 0.00                    | <b>60.00</b>                                 |
|                 | ,                          |                        | ****                   |                         | 69.88                                        |
| 22 JAN 1998     | 74.84                      | 4.97                   | 4.97                   | 0.00                    | 69.87                                        |
| 05 FEB 1998     | 74.84                      | 4.80                   | 4.80                   | 0.00                    | 70.04                                        |
| 15 FEB 1998     | 74.84                      | 4.90                   | 4.90                   | 0.00                    | 69.94                                        |
| 02 MAR 1998     | 74.84                      | 3.44                   | 3.44                   | 0.00                    | 71.40                                        |
| 18 MAR 1998     | 74.84                      | 3.51                   | 3.51                   | 0.00                    | 71.33                                        |
| 14 APR 1998     | 74.84                      | 4.38                   | 4.38                   | 0.00                    | 70.46                                        |
| 25 APR 1998     | 74.84                      | 3.33                   | 3.33                   | 0.00                    | 71.51                                        |
| 07 MAY 1998     | 74.84                      | 3.29                   | 3.29                   | 0.00                    | 71.55                                        |
| 21 MAY 1998     | 74.84                      | 4.43                   | 4.43                   | 0.00                    | 70.41                                        |
| 09 JUN 1998     | 74.84                      | 4.69                   | 4.69                   | 0.00                    | 70.15                                        |
| 16 JUN 1998     | 74.84                      | 3.28                   | 3.28                   | 0.00                    | 71.56                                        |
| 30 JUN 1998     | 74.84                      | 3.59                   | 3.59                   | 0.00                    | 71.25                                        |
|                 |                            |                        | WP-2                   | •                       |                                              |
| 06 JAN 1998     | 75.25                      | 5.87                   | 5.87                   | 0.00                    | 69.38                                        |
| 22 JAN 1998     | 75.25                      | 5.92                   | 5.92                   | 0.00                    | 69.33                                        |
| 05 FEB 1998     | 75.25                      | 7.72                   | 7.72                   | 0.00                    | 67.53                                        |
| 15 FEB 1998     | 75.25                      | 5.85                   | 5.85                   | 0.00                    | 69.40                                        |
| 02 MAR 1998     | 75.25                      | 4.74                   | 4.74                   | 0.00                    | 70.51                                        |
| 18 MAR 1998     | 75.25                      | 4.86                   | 4.86                   | 0.00                    | 70.39                                        |
| 14 APR 1998     | 75.25                      | 5.33                   | 5.33                   | 0.00                    | 69.92                                        |
| 25 APR 1998     | 75.25                      | 4.00                   | 4.00                   | 0.00                    | 71.25                                        |
| 07 MAY 1998     | 75.25                      | 4.05                   | 4.05                   | 0.00                    | 71.20                                        |
| 21 MAY 1998     | 75.25                      | 5.32                   | 5.32                   | 0.00                    | 69.93                                        |
| 09 JUN 1998     | 75.25                      | 5.66                   | 5.66                   | 0.00                    | 69.59                                        |
| 16 JUN 1998     | 75.25                      | 4.02                   | 4.02                   | 0.00                    | 71.23                                        |
| 30 JUN 1998     | 75.25                      | 4.63                   | 4.63                   | 0.00                    | 70.62                                        |

<sup>(</sup>a) Water table elevations in wells containing LNAPL calculated based on an assumed specific gravity of 0.83 for the LNAPL.

NOTE: LNAPL = Light, non-aqueous phase liquid; MSL = Mean sea level.
Well point WP-19 was not gauged because it was destroyed during July 1997.

| Gauging     | Well Elevation | Depth to   | Depth to   | LNAPL          | Water Table                   |  |  |
|-------------|----------------|------------|------------|----------------|-------------------------------|--|--|
| Data        | (ft MSL)       | Water (ft) | LNAPL (ft) | Thickness (ft) | Elevation (ft) <sup>(a)</sup> |  |  |
| WP-3        |                |            |            |                |                               |  |  |
| 06 JAN 1998 | 74.16          | 4.91       | 4.91       | 0.00           | 69.25                         |  |  |
| 22 JAN 1998 | 74.16          | 4.82       | 4.82       | 0.00           | 69.34                         |  |  |
| 05 FEB 1998 | 74.16          | 4.45       | 4.45       | 0.00           | 69.71                         |  |  |
| 15 FEB 1998 | 74.16          | 4.82       | 4.82       | 0.00           | 69.34                         |  |  |
| 02 MAR 1998 | 74.16          | 3.39       | 3.39       | 0.00           | 70.77                         |  |  |
| 18 MAR 1998 | 74.16          | 3.46       | 3.46       | 0.00           | 70.70                         |  |  |
| 14 APR 1998 | 74.16          | 3.83       | 3.83       | 0.00           | 70.33                         |  |  |
| 25 APR 1998 | 74.16          | 3.10       | 3.10       | 0.00           | 71.06                         |  |  |
| 07 MAY 1998 | 74.16          | 2.67       | 2.67       | 0.00           | 71.49                         |  |  |
| 21 MAY 1998 | 74.16          | 3.72       | 3.72       | 0.00           | 70.44                         |  |  |
| 09 JUN 1998 | 74.16          | 4.35       | 4.35       | 0.00           | 69.81                         |  |  |
| 16 JUN 1998 | 74.16          | 2.96       | 2.96       | 0.00           | 71.20                         |  |  |
| 30 JUN 1998 | 74.16          | 3.09       | 3.09       | 0.00           | 71.07                         |  |  |
|             |                |            | WP-4       |                |                               |  |  |
| 06 JAN 1998 | 76.18          | 6.85       | 6.85       | 0.00           | 69.33                         |  |  |
| 22 JAN 1998 | 76.18          | 6.71       | 6.71       | 0.00           | 69.47                         |  |  |
| 05 FEB 1998 | 76.18          | 6.46       | 6.46       | 0.00           | 69.72                         |  |  |
| 15 FEB 1998 | 76.18          | 6.65       | 6.65       | 0.00           | 69.53                         |  |  |
| 02 MAR 1998 | 76.18          | 4.67       | 4.67       | 0.00           | 71.51                         |  |  |
| 18 MAR 1998 | 76.18          | 4.45       | 4.45       | 0.00           | 71.73                         |  |  |
| 14 APR 1998 | 76.18          | 4.96       | 4.96       | 0.00           | 71.22                         |  |  |
| 25 APR 1998 | 76.18          | 4.03       | 4.03       | 0.00           | 72.15                         |  |  |
| 07 MAY 1998 | 76.18          | 2.35       | 2.35       | 0.00           | 73.83                         |  |  |
| 21 MAY 1998 | 76.18          | 4.82       | 4.82       | 0.00           | 71.36                         |  |  |
| 09 JUN 1998 | 76.18          | 7.82       | 7.82       | 0.00           | 68.36                         |  |  |
| 16 JUN 1998 | 76.18          | 2.49       | 2.49       | 0.00           | 73.69                         |  |  |
| 30 JUN 1998 | 76.18          | 3.89       | 3.89       | 0.00           | 72.29                         |  |  |
|             |                | ,          | WP-5       |                |                               |  |  |
| 06 JAN 1998 | 74.64          | 5.67       | 5.67       | 0.00           | 68.97                         |  |  |
| 22 JAN 1998 | 74.64          | 5.82       | 5.82       | 0.00           | 68.82                         |  |  |
| 05 FEB 1998 | 74.64          | 5.58       | 5.58       | 0.00           | 69.06                         |  |  |
| 15 FEB 1998 | 74.64          | 5.72       | 5.72       | 0.00           | 68.92                         |  |  |
| 02 MAR 1998 | 74.64          | 5.02       | 5.02       | 0.00           | 69.62                         |  |  |
| 18 MAR 1998 | 74.64          | 4.99       | 4.99       | 0.00           | 69.65                         |  |  |
| 14 APR 1998 | 74.64          | 5.31       | 5.31       | 0.00           | 69.33                         |  |  |
| 25 APR 1998 | 74.64          | 4.57       | 4.57       | 0.00           | 70.07                         |  |  |
| 07 MAY 1998 | 74.64          | 3.30       | 3.30       | 0.00           | 71.34                         |  |  |
| 21 MAY 1998 | 74.64          | 5.20       | 5.20       | 0.00           | 69.44                         |  |  |
| 09 JUN 1998 | 74.64          | 5.52       | 5.52       | 0.00           | 69.12                         |  |  |
| 16 JUN 1998 | 74.64          | 3.71       | 3.71       | 0.00           | 70.93                         |  |  |
| 30 JUN 1998 | 74.64          | 4.75       | 4.75       | 0.00           | 69.89                         |  |  |

| Gauging     | Well Elevation | Depth to   | Depth to   | LNAPL                | Water Table                   |  |  |
|-------------|----------------|------------|------------|----------------------|-------------------------------|--|--|
| Data        | (ft MSL)       | Water (ft) | LNAPL (ft) | Thickness (ft)       | Elevation (ft) <sup>(a)</sup> |  |  |
| WP-6        |                |            |            |                      |                               |  |  |
| 06 JAN 1998 | 73.72          | 4.91       | 4.91       | 0.00                 | 68.81                         |  |  |
| 22 JAN 1998 | 73.72          | 4.99       | 4.99       | 0.00                 | 68.73                         |  |  |
| 05 FEB 1998 | 73.72          | 4.65       | 4.65       | 0.00                 | 69.07                         |  |  |
| 15 FEB 1998 | 73.72          | 5.00       | 5.00       | 0.00                 | 68.72                         |  |  |
| 02 MAR 1998 | 73.72          | 3.93       | 3.93       | 0.00                 | 69.79                         |  |  |
| 18 MAR 1998 | 73.72          | 3.89       | 3.89       | 0.00                 | 69.83                         |  |  |
| 14 APR 1998 | 73.72          | 4.20       | 4.20       | 0.00                 | 69.52                         |  |  |
| 25 APR 1998 | 73.72          | 3.25       | 3.25       | 0.00                 | 70.47                         |  |  |
| 07 MAY 1998 | 73.72          | 2.32       | 2.32       | 0.00                 | 71.40                         |  |  |
| 21 MAY 1998 | 73.72          | 4.21       | 4.21       | 0.00                 | 69.51                         |  |  |
| 09 JUN 1998 | 73.72          | 4.65       | 4.65       | 0.00                 | 69.07                         |  |  |
| 16 JUN 1998 | 73.72          | 2.35       | 2.35       | 0.00                 | 71.37                         |  |  |
| 30 JUN 1998 | 73.72          | 3.51       | 3.51       | 0.00                 | 70.21                         |  |  |
|             |                | •          | WP-7       |                      |                               |  |  |
| 06 JAN 1998 | 73.92          | 5.46       | 5.46       | 0.00                 | 68.46                         |  |  |
| 22 JAN 1998 | 73.92          | 5.65       | 5.65       | 0.00                 | 68.27                         |  |  |
| 05 FEB 1998 | 73.92          | 5.47       | 5.47       | 0.00                 | 68.45                         |  |  |
| 15 FEB 1998 | 73.92          |            | D          | ata not available (b | locked)                       |  |  |
| 02 MAR 1998 | 73.92          | 4.11       | 4.11       | 0.00                 | 69.81                         |  |  |
| 18 MAR 1998 | 73.92          | 4.09       | 4.09       | 0.00                 | 69.83                         |  |  |
| 14 APR 1998 | 73.92          | 4.63       | 4.63       | 0.00                 | 69.29                         |  |  |
| 25 APR 1998 | 73.92          | 3.35       | 3.35       | 0.00                 | 70.57                         |  |  |
| 07 MAY 1998 | 73.92          | 2.80       | 2.80       | 0.00                 | 71.12                         |  |  |
| 21 MAY 1998 | 73.92          | 4.63       | 4.63       | 0.00                 | 69.29                         |  |  |
| 09 JUN 1998 | 73.92          | 5.07       | 5.07       | 0.00                 | 68.85                         |  |  |
| 16 JUN 1998 | 73.92          | 3.00       | 3.00       | 0.00                 | 70.92                         |  |  |
| 30 JUN 1998 | 73.92          | 3.73       | 3.73       | 0.00                 | 70.19                         |  |  |
|             |                | 1          | WP-8       | -                    |                               |  |  |
| 06 JAN 1998 | 74.99          | 5.22       | 5.22       | 0.00                 | 69.77                         |  |  |
| 22 JAN 1998 | 74.99          | 6.42       | 6.42       | 0.00                 | 68.57                         |  |  |
| 05 FEB 1998 | 74.99          | 6.05       | 6.05       | 0.00                 | 68.94                         |  |  |
| 15 FEB 1998 | 74.99          | 6.40       | 6.40       | 0.00                 | 68.59                         |  |  |
| 02 MAR 1998 | 74.99          | 4.82       | 4.82       | 0.00                 | 70.17                         |  |  |
| 18 MAR 1998 | 74.99          | 4.50       | 4.50       | 0.00                 | 70.49                         |  |  |
| 14 APR 1998 | 74.99          | 4.94       | 4.94       | 0.00                 | 70.05                         |  |  |
| 25 APR 1998 | 74.99          | 3.36       | 3.36       | 0.00                 | 71.63                         |  |  |
| 07 MAY 1998 | 74.99          | 2.98       | 2.98       | 0.00                 | 72.01                         |  |  |
| 21 MAY 1998 | 74.99          | 5.03       | 5.03       | 0.00                 | 69.96                         |  |  |
| 09 JUN 1998 | 74.99          | 5.67       | 5.67       | 0.00                 | 69.32                         |  |  |
| 16 JUN 1998 | 74.99          | 3.03       | 3.03       | 0.00                 | 71.96                         |  |  |
| 30 JUN 1998 | 74.99          | 3.79       | 3.79       | 0.00                 | 71.20                         |  |  |

| Gauging<br>Data                            | Well Elevation<br>(ft MSL) | Depth to<br>Water (ft)   | Depth to<br>LNAPL (ft) | LNAPL<br>Thickness (ft) | Water Table<br>Elevation (ft) <sup>(a)</sup> |  |
|--------------------------------------------|----------------------------|--------------------------|------------------------|-------------------------|----------------------------------------------|--|
| Data                                       | (It MSL)                   | <u> </u>                 | WP-9                   | Thickness (it)          | Elevation (It)                               |  |
| 06 JAN 1998 75.46 Data not available (dry) |                            |                          |                        |                         |                                              |  |
| 22 JAN 1998                                | 75.46                      | Data not available (dry) |                        |                         |                                              |  |
| 05 FEB 1998                                | 75.46                      |                          |                        | ot available (dry)      |                                              |  |
| 15 FEB 1998                                | 75.46                      |                          |                        | ot available (dry)      |                                              |  |
| 02 MAR 1998                                | 75.46                      |                          |                        | ot available (dry)      |                                              |  |
| 18 MAR 1998                                | 75.46                      | 6.39                     | 6.39                   | 0.00                    | 69.07                                        |  |
| 14 APR 1998                                | 75.46                      | 6.02                     | 6.02                   | 0.00                    | 69.44                                        |  |
| 25 APR 1998                                | 75.46                      | 5.38                     | 5.38                   | 0.00                    | 70.08                                        |  |
| 07 MAY 1998                                | 75.46                      | 3.51                     | 3.51                   | 0.00                    | 71.95                                        |  |
| 21 MAY 1998                                | 75.46                      | 4.78                     | 4.78                   | 0.00                    | 70.68                                        |  |
| 09 JUN 1998                                | 75.46                      | 6.35                     | 6.35                   | 0.00                    | 69.11                                        |  |
| 16 JUN 1998                                | 75.46                      | 3.05                     | 3.05                   | 0.00                    | 72.41                                        |  |
| 30 JUN 1998                                | 75.46                      | 3.70                     | 3.70                   | 0.00                    | 71.76                                        |  |
|                                            |                            | v                        | VP-10                  |                         |                                              |  |
| 06 JAN 1998                                | 74.83                      | 5.86                     | 5.86                   | 0.00                    | 68.97                                        |  |
| 22 JAN 1998                                | 74.83                      | 6.06                     | 6.06                   | 0.00                    | 68.77                                        |  |
| 05 FEB 1998                                | 74.83                      | 5.65                     | 5.65                   | 0.00                    | 69.18                                        |  |
| 15 FEB 1998                                | 74.83                      | 7.56                     | 7.56                   | 0.00                    | 67.27                                        |  |
| 02 MAR 1998                                | 74.83                      | 4.69                     | 4.69                   | 0.00                    | 70.14                                        |  |
| 18 MAR 1998                                | 74.83                      | 4.48                     | 4.48                   | 0.00                    | 70.35                                        |  |
| 14 APR 1998                                | 74.83                      | 4.70                     | 4.70                   | 0.00                    | 70.13                                        |  |
| 25 APR 1998                                | 74.83                      | 3.35                     | 3.35                   | 0.00                    | 71.48                                        |  |
| 07 MAY 1998                                | 74.83                      | 1.60                     | 1.60                   | 0.00                    | 73.23                                        |  |
| 21 MAY 1998                                | 74.83                      | 4.68                     | 4.68                   | 0.00                    | 70.15                                        |  |
| 09 JUN 1998                                | 74.83                      | 5.47                     | 5.47                   | 0.00                    | 69.36                                        |  |
| 16 JUN 1998                                | 74.83                      | 1.68                     | 1.68                   | 0.00                    | 73.15                                        |  |
| 30 JUN 1998                                | 74.83                      | 3.65                     | 3.65                   | 0.00                    | 71.18                                        |  |
|                                            |                            | v                        | VP-11                  |                         |                                              |  |
| 06 JAN 1998                                | 74.06                      | 5.72                     | 5.72                   | 0.00                    | 68.34                                        |  |
| 22 JAN 1998                                | 74.06                      | 6.06                     | 6.06                   | 0.00                    | 68.00                                        |  |
| 05 FEB 1998                                | 74.06                      |                          | Data not               | t available (frozen)    |                                              |  |
| 15 FEB 1998                                | 74.06                      |                          | Data not               | t available (frozen)    |                                              |  |
| 02 MAR 1998                                | 74.06                      |                          | Data n                 | ot available (dry)      |                                              |  |
| 18 MAR 1998                                | 74.06                      | 4.68                     | 4.68                   | 0.00                    | 69.38                                        |  |
| 14 APR 1998                                | 74.06                      | 5.06                     | 5.06                   | 0.00                    | 69.00                                        |  |
| 25 APR 1998                                | 74.06                      | 4.73                     | 4.73                   | 0.00                    | 69.33                                        |  |
| 07 MAY 1998                                | 74.06                      | 3.00                     | 3.00                   | 0.00                    | 71.06                                        |  |
| 21 MAY 1998                                | 74.06                      | 4.98                     | 4.98                   | 0.00                    | 69.08                                        |  |
| 09 JUN 1998                                | 74.06                      | 5.45                     | 5.45                   | 0.00                    | 68.61                                        |  |
| 16 JUN 1998                                | 74.06                      | 2.99                     | 2.99                   | 0.00                    | 71.07                                        |  |
| 30 JUN 1998                                | 74.06                      | 4.24                     | 4.24                   | 0.00                    | 69.82                                        |  |

| Gauging                                                                     | Well Elevation<br>(ft MSL) | Depth to                            | Depth to<br>LNAPL (ft) | LNAPL | Water Table |  |  |  |
|-----------------------------------------------------------------------------|----------------------------|-------------------------------------|------------------------|-------|-------------|--|--|--|
| Data (ft MSL) Water (ft) LNAPL (ft) Thickness (ft) Elevation (ft)(a)  WP-12 |                            |                                     |                        |       |             |  |  |  |
| 06 JAN 1998 75.12 Data not available (dry)                                  |                            |                                     |                        |       |             |  |  |  |
| 22 JAN 1998                                                                 | 75.12                      | Data not available (dry)            |                        |       |             |  |  |  |
| 05 FEB 1998                                                                 | 75.12                      | Data not available (dry)            |                        |       |             |  |  |  |
| 15 FEB 1998                                                                 | 75.12                      | Data not available (dry)            |                        |       |             |  |  |  |
| 02 MAR 1998                                                                 | 75.12                      | 7.49                                | 7.49                   | 0.00  | 67.63       |  |  |  |
| 18 MAR 1998                                                                 | 75.12                      | 6.48                                | 6.48                   | 0.00  | 68.64       |  |  |  |
| 14 APR 1998                                                                 | 75.12                      | 6.53                                | 6.53                   | 0.00  | 68.59       |  |  |  |
| 25 APR 1998                                                                 | 75.12                      | 5.48                                | 5.48                   | 0.00  | 69.64       |  |  |  |
| 07 MAY 1998                                                                 | 75.12                      | 4.06                                | 4.06                   | 0.00  | 71.06       |  |  |  |
| 21 MAY 1998                                                                 | 75.12                      | 6.17                                | 6.17                   | 0.00  | 68.95       |  |  |  |
| 09 JUN 1998                                                                 | 75.12                      | 7.35                                | 7.35                   | 0.00  | 67.77       |  |  |  |
| 16 JUN 1998                                                                 | 75.12                      | 4.31                                | 4.31                   | 0.00  | 70.81       |  |  |  |
| 30 JUN 1998                                                                 | 75.12                      | 4.92                                | 4.92                   | 0.00  | 70.20       |  |  |  |
|                                                                             | WP-13                      |                                     |                        |       |             |  |  |  |
| 06 JAN 1998                                                                 | 74.34                      | 4.61                                | 4.61                   | 0.00  | 69.73       |  |  |  |
| 22 JAN 1998                                                                 | 74.34                      | 7.70                                | 7.70                   | 0.00  | 66.64       |  |  |  |
| 05 FEB 1998                                                                 | 74.34                      | Data not available (frozen)         |                        |       |             |  |  |  |
| 15 FEB 1998                                                                 | 74.34                      | Data not available (unable to open) |                        |       |             |  |  |  |
| 02 MAR 1998                                                                 | 74.34                      | 4.19                                | 4.19                   | 0.00  | 70.15       |  |  |  |
| 18 MAR 1998                                                                 | 74.34                      | 4.57                                | 4.57                   | 0.00  | 69.77       |  |  |  |
| 14 APR 1998                                                                 | 74.34                      | 4.98                                | 4.98                   | 0.00  | 69.36       |  |  |  |
| 25 APR 1998                                                                 | 74.34                      | 3.76                                | 3.76                   | 0.00  | 70.58       |  |  |  |
| 07 MAY 1998                                                                 | 74.34                      | 2.36                                | 2.36                   | 0.00  | 71.98       |  |  |  |
| 21 MAY 1998                                                                 | 74.34                      | 4.46                                | 4.46                   | 0.00  | 69.88       |  |  |  |
| 09 JUN 1998                                                                 | 74.34                      | 5.81                                | 5.81                   | 0.00  | 68.53       |  |  |  |
| 16 JUN 1998                                                                 | 74.34                      | Data not available (bent casing)    |                        |       |             |  |  |  |
| 30 JUN 1998                                                                 | 74.34                      | Data not available (bent casing)    |                        |       |             |  |  |  |
|                                                                             |                            |                                     | P-14                   |       |             |  |  |  |
| 06 JAN 1998                                                                 | 75.18                      | 6.52                                | 6.52                   | 0.00  | 68.66       |  |  |  |
| 22 JAN 1998                                                                 | 75.18                      | 6.63                                | 6.63                   | 0.00  | 68.55       |  |  |  |
| 05 FEB 1998                                                                 | 75.18                      | Data not available (frozen)         |                        |       |             |  |  |  |
| 15 FEB 1998                                                                 | 75.18                      | Data not available (frozen)         |                        |       |             |  |  |  |
| 02 MAR 1998                                                                 | 75.18                      | 4.25                                | 4.25                   | 0.00  | 70.93       |  |  |  |
| 18 MAR 1998                                                                 | 75.18                      | 5.12                                | 5.12                   | 0.00  | 70.06       |  |  |  |
| 14 APR 1998                                                                 | 75.18                      | 5.41                                | 5.41                   | 0.00  | 69.77       |  |  |  |
| 25 APR 1998                                                                 | 75.18                      | 4.59                                | 4.59                   | 0.00  | 70.59       |  |  |  |
| 07 MAY 1998                                                                 | 75.18                      | 2.69                                | 2.69                   | 0.00  | 72.49       |  |  |  |
| 21 MAY 1998                                                                 | 75.18                      | 5.36                                | 5.36                   | 0.00  | 69.82       |  |  |  |
| 09 JUN 1998                                                                 | 75.18                      | 6.07                                | 6.07                   | 0.00  | 69.11       |  |  |  |
| 16 JUN 1998                                                                 | 75.18                      | 2.82                                | 2.82                   | 0.00  | 72.36       |  |  |  |
| 30 JUN 1998                                                                 | 75.18                      | 4.44                                | 4.44                   | 0.00  | 70.74       |  |  |  |

| Gauging                                                                                        | Well Elevation | Depth to                    | Depth to   | LNAPL                | Water Table                   |  |  |  |
|------------------------------------------------------------------------------------------------|----------------|-----------------------------|------------|----------------------|-------------------------------|--|--|--|
| Data                                                                                           | (ft MSL)       | Water (ft)                  | LNAPL (ft) | Thickness (ft)       | Elevation (ft) <sup>(a)</sup> |  |  |  |
| WP-15                                                                                          |                |                             |            |                      |                               |  |  |  |
| 06 JAN 1998                                                                                    | 74.54          | 6.32                        | 6.32       | 0.00                 | 68.22                         |  |  |  |
| 22 JAN 1998                                                                                    | 74.54          | 6.58                        | 6.58       | 0.00                 | 67.96                         |  |  |  |
| 05 FEB 1998                                                                                    | 74.54          | 8.00                        | 8.00       | 0.00                 | 66.54                         |  |  |  |
| 15 FEB 1998                                                                                    | 74.54          | 6.35                        | 6.35       | 0.00                 | 68.19                         |  |  |  |
| 02 MAR 1998                                                                                    | 74.54          | 5.05                        | 5.05       | 0.00                 | 69.49                         |  |  |  |
| 18 MAR 1998                                                                                    | 74.54          | 4.92                        | 4.92       | 0.00                 | 69.62                         |  |  |  |
| 14 APR 1998                                                                                    | 74.54          | 5.32                        | 5.32       | 0.00                 | 69.22                         |  |  |  |
| 25 APR 1998                                                                                    | 74.54          | 5.00                        | 5.00       | 0.00                 | 69.54                         |  |  |  |
| 07 MAY 1998                                                                                    | 74.54          | 3.15                        | 3.15       | 0.00                 | 71.39                         |  |  |  |
| 21 MAY 1998                                                                                    | 74.54          | 5.25                        | 5.25       | 0.00                 | 69.29                         |  |  |  |
| 09 JUN 1998                                                                                    | 74.54          | 5.93                        | 5.93       | 0.00                 | 68.61                         |  |  |  |
| 16 JUN 1998                                                                                    | 74.54          | 3.16                        | 3.16       | 0.00                 | 71.38                         |  |  |  |
| 30 JUN 1998                                                                                    | 74.54          | 4.41                        | 4.41       | 0.00                 | 70.13                         |  |  |  |
| WP-16R                                                                                         |                |                             |            |                      |                               |  |  |  |
| 22 JAN 1998                                                                                    | 73.33          |                             | Data not   | t available (frozen) |                               |  |  |  |
| 05 FEB 1998                                                                                    | 73.33          |                             | Data not   | t available (frozen) |                               |  |  |  |
| 15 FEB 1998                                                                                    | 73.33          | Data not available (frozen) |            |                      |                               |  |  |  |
| 02 MAR 1998                                                                                    | 73.33          | 8.49                        |            |                      | 64.84                         |  |  |  |
| 18 MAR 1998                                                                                    | 73.33          | 6.55                        |            |                      | 66.78                         |  |  |  |
| 07 MAY 1998                                                                                    | 73.33          | 4.13                        |            |                      | 69.20                         |  |  |  |
| 21 MAY 1998                                                                                    | 73.33          | 5.54                        |            |                      | 67.79                         |  |  |  |
| 09 JUN 1998                                                                                    | 73.33          | 7.28                        |            |                      | 66.05                         |  |  |  |
| 16 JUN 1998                                                                                    | 73.33          | 4.02                        |            |                      | 69.31                         |  |  |  |
| 30 JUN 1998                                                                                    | 73.33          | 4.26                        |            |                      | 69.07                         |  |  |  |
| WP-17R                                                                                         |                |                             |            |                      |                               |  |  |  |
| 22 JAN 1998                                                                                    | 74.74          | 8.70                        |            |                      | 66.04                         |  |  |  |
| 05 FEB 1998                                                                                    | 74.74          |                             | Data not   | available (frozen)   |                               |  |  |  |
| 15 FEB 1998                                                                                    | 74.74          | Data not available (frozen) |            |                      |                               |  |  |  |
| 02 MAR 1998                                                                                    | 74.74          | 2.61                        |            | w 20 cm              | 72.13                         |  |  |  |
| 18 MAR 1998                                                                                    | 74.74          | 6.80                        |            | ***                  | 67.94                         |  |  |  |
| 07 MAY 1998                                                                                    | 74.74          | 4.11                        |            |                      | 70.63                         |  |  |  |
| 21 MAY 1998                                                                                    | 74.74          | 6.27                        |            |                      | 68.47                         |  |  |  |
| 09 JUN 1998                                                                                    | 74.74          | 7.60                        |            |                      | 67.14                         |  |  |  |
| 16 JUN 1998                                                                                    | 74.74          | 4.80                        |            |                      | 69.94                         |  |  |  |
| 30 JUN 1998                                                                                    | 74.74          | 5.18                        |            |                      | 69.56                         |  |  |  |
| NOTE: Dashes () indicate small diameter well point; inaccessible by oil/water interface probe. |                |                             |            |                      |                               |  |  |  |

| Gauging     | Well Elevation | Depth to   | Depth to   | LNAPL                | Water Table                   |  |  |  |
|-------------|----------------|------------|------------|----------------------|-------------------------------|--|--|--|
| Data        | (ft MSL)       | Water (ft) | LNAPL (ft) | Thickness (ft)       | Elevation (ft) <sup>(a)</sup> |  |  |  |
| WP-18R      |                |            |            |                      |                               |  |  |  |
| 22 JAN 1998 | 74.81          |            | Data no    | t available (frozen) |                               |  |  |  |
| 05 FEB 1998 | 74.81          |            | Data no    | t available (frozen) |                               |  |  |  |
| 15 FEB 1998 | 74.81          |            | Data no    | t available (frozen) |                               |  |  |  |
| 18 MAR 1998 | 74.81          | 5.46       |            |                      | 69.35                         |  |  |  |
| 07 MAY 1998 | 74.81          | 2.41       |            |                      | 72.40                         |  |  |  |
| 21 MAY 1998 | 74.81          | 5.35       |            |                      | 69.46                         |  |  |  |
| 09 JUN 1998 | 74.81          | 6.18       |            |                      | 68.63                         |  |  |  |
| 16 JUN 1998 | 74.81          | 2.35       |            |                      | 72.46                         |  |  |  |
| 30 JUN 1998 | 74.81          | 4.49       |            |                      | 70.32                         |  |  |  |
|             |                | V          | VP-20      |                      |                               |  |  |  |
| 06 JAN 1998 | 72.67          | 6.02       | 6.02       | 0.00                 | 66.65                         |  |  |  |
| 22 JAN 1998 | 72.67          | 6.44       | 6.44       | 0.00                 | 66.23                         |  |  |  |
| 05 FEB 1998 | 72.67          | 6.45       | 6.45       | 0.00                 | 66.22                         |  |  |  |
| 15 FEB 1998 | 72.67          | 6.00       | 6.00       | 0.00                 | 66.67                         |  |  |  |
| 02 MAR 1998 | 72.67          | 4.57       | 4.57       | 0.00                 | 68.10                         |  |  |  |
| 18 MAR 1998 | 72.67          | 4.98       | 4.98       | 0.00                 | 67.69                         |  |  |  |
| 14 APR 1998 | 72.67          | 5.43       | 5.43       | 0.00                 | 67.24                         |  |  |  |
| 25 APR 1998 | 72.67          | 3.98       | 3.98       | 0.00                 | 68.69                         |  |  |  |
| 07 MAY 1998 | 72.67          | 3.20       | 3.20       | 0.00                 | 69.47                         |  |  |  |
| 21 MAY 1998 | 72.67          | 5.09       | 5.09       | 0.00                 | 67.58                         |  |  |  |
| 09 JUN 1998 | 72.67          |            | Well       | point destroyed      |                               |  |  |  |
| 16 JUN 1998 | 72.67          |            | Well       | point destroyed      |                               |  |  |  |
| 30 JUN 1998 | 72.67          |            | Well       | point destroyed      |                               |  |  |  |
|             |                | <u> </u>   | /P-21      |                      |                               |  |  |  |
| 22 JAN 1998 | 75.77          | 6.95       | 6.95       | 0.00                 | 68.82                         |  |  |  |
| 05 FEB 1998 | 75.77          |            | Data not   | available (frozen)   |                               |  |  |  |
| 15 FEB 1998 | 75.77          |            | Data not   | available (frozen)   |                               |  |  |  |
| 02 MAR 1998 | 75.77          |            | Data not   | available (frozen)   |                               |  |  |  |
| 18 MAR 1998 | 75.77          | 6.05       |            |                      | 69.72                         |  |  |  |
| 07 MAY 1998 | 75.77          | 6.31       |            |                      | 69.46                         |  |  |  |
| 21 MAY 1998 | 75.77          | 5.64       |            |                      | 70.13                         |  |  |  |
| 09 JUN 1998 | 75.77          | 6.33       |            |                      | 69.44                         |  |  |  |
| 16 JUN 1998 | 75.77          | 4.96       |            |                      | 70.81                         |  |  |  |
| 30 JUN 1998 | 75.77          | 4.85       |            |                      | 70.92                         |  |  |  |

| Gauging<br>Data | Well Elevation<br>(ft MSL) | Depth to<br>Water (ft) | Depth to<br>LNAPL (ft) | LNAPL<br>Thickness (ft) | Water Table<br>Elevation (ft) <sup>(a)</sup> |  |  |  |
|-----------------|----------------------------|------------------------|------------------------|-------------------------|----------------------------------------------|--|--|--|
| WP-22           |                            |                        |                        |                         |                                              |  |  |  |
| 22 JAN 1998     | 76.10                      | 7.78                   |                        |                         | 68.32                                        |  |  |  |
| 05 FEB 1998     | 76.10                      |                        | Data not               | t available (frozen)    |                                              |  |  |  |
| 15 FEB 1998     | 76.10                      |                        | Data not               | t available (frozen)    |                                              |  |  |  |
| 02 MAR 1998     | 76.10                      |                        | Data not               | available (blocked)     |                                              |  |  |  |
| 18 MAR 1998     | 76.10                      | 5.74                   |                        |                         | 70.36                                        |  |  |  |
| 07 MAY 1998     | 76.10                      | 4.18                   |                        |                         | 71.92                                        |  |  |  |
| 21 MAY 1998     | 76.10                      | 6.00                   |                        |                         | 70.10                                        |  |  |  |
| 09 JUN 1998     | 76.10                      | 6.73                   |                        |                         | 69.37                                        |  |  |  |
| 16 JUN 1998     | 76.10                      | 3.89                   |                        |                         | 72.21                                        |  |  |  |
| 30 JUN 1998     | 76.10                      | 4.68                   |                        |                         | 71.42                                        |  |  |  |
|                 |                            | M                      | W-43                   |                         |                                              |  |  |  |
| 06 JAN 1998     | 73.88                      |                        | Data n                 | ot available (dry)      |                                              |  |  |  |
| 22 JAN 1998     | 73.88                      |                        | Data no                | ot available (dry)      |                                              |  |  |  |
| 05 FEB 1998     | 73.88                      |                        | Data ne                | ot available (dry)      |                                              |  |  |  |
| 15 FEB 1998     | 73.88                      |                        | Data no                | ot available (dry)      |                                              |  |  |  |
| 02 MAR 1998     | 73.88                      | 6.74                   | 6.74                   | 0.00                    | 67.14                                        |  |  |  |
| 18 MAR 1998     | 73.88                      | 6.17                   | 6.17                   | 0.00                    | 67.71                                        |  |  |  |
| 14 APR 1998     | 73.88                      | 4.54                   | 4.54                   | 0.00                    | 69.34                                        |  |  |  |
| 25 APR 1998     | 73.88                      | 3.79                   | 3.79                   | 0.00                    | 70.09                                        |  |  |  |
| 20 MAY 1998     | 73.88                      | 6.18                   | 6.18                   | 0.00                    | 67.70                                        |  |  |  |
| 09 JUN 1998     | 73.88                      |                        | Data ne                | ot available (dry)      |                                              |  |  |  |
| 16 JUN 1998     | 73.88                      | 4.05                   | 4.05                   | 0.00                    | 69.83                                        |  |  |  |
| 30 JUN 1998     | 73.88                      | 5.51                   | 5.51                   | 0.00                    | 68.37                                        |  |  |  |
|                 |                            | M                      | W-44                   |                         |                                              |  |  |  |
| 06 JAN 1998     | 73.18                      | 3.59                   | 3.59                   | 0.00                    | 69.59                                        |  |  |  |
| 22 JAN 1998     | 73.18                      | 3.55                   | 3.55                   | 0.00                    | 69.63                                        |  |  |  |
| 05 FEB 1998     | 73.18                      | 3.35                   | 3.35                   | 0.00                    | 69.83                                        |  |  |  |
| 15 FEB 1998     | 73.18                      | 3.47                   | 3.47                   | 0.00                    | 69.71                                        |  |  |  |
| 02 MAR 1998     | 73.18                      | 8.88                   | 8.88                   | 0.00                    | 64.30                                        |  |  |  |
| 18 MAR 1998     | 73.18                      | 2.56                   | 2.56                   | 0.00                    | 70.62                                        |  |  |  |
| 14 APR 1998     | 73.18                      | 2.81                   | 2.81                   | 0.00                    | 70.37                                        |  |  |  |
| 25 APR 1998     | 73.18                      | 2.05                   | 2.05                   | 0.00                    | 71.13                                        |  |  |  |
| 07 MAY 1998     | 73.18                      | 1.66                   | 1.66                   | 0.00                    | 71.52                                        |  |  |  |
| 20 MAY 1998     | 73.18                      | 2.81                   | 2.81                   | 0.00                    | 70.37                                        |  |  |  |
| 09 JUN 1998     | 73.18                      | 3.55                   | 3.55                   | 0.00                    | 69.63                                        |  |  |  |
| 16 JUN 1998     | 73.18                      | 1.78                   | 1.78                   | 0.00                    | 71.40                                        |  |  |  |
| 30 JUN 1998     | 73.18                      | 2.07                   | 2.07                   | 0.00                    | 71.11                                        |  |  |  |

| Gauging<br>Data      | Well Elevation<br>(ft MSL) | Depth to<br>Water (ft) | Depth to<br>LNAPL (ft) | LNAPL<br>Thickness (ft) | Water Table<br>Elevation (ft) <sup>(a)</sup> |  |  |  |  |
|----------------------|----------------------------|------------------------|------------------------|-------------------------|----------------------------------------------|--|--|--|--|
| MW-46 <sup>(b)</sup> |                            |                        |                        |                         |                                              |  |  |  |  |
| 15 FEB 1998          | 71.02                      | 5.32                   | 5.32                   | 0.00                    | 65.70                                        |  |  |  |  |
| 20 MAY 1998          | 71.02                      | 4.14                   | 4.14                   | 0.00                    | 66.88                                        |  |  |  |  |
|                      |                            | N                      | 1W-49                  |                         |                                              |  |  |  |  |
| 06 JAN 1998          | 66.97                      | 5.81                   | 5.81                   | 0.00                    | 61.16                                        |  |  |  |  |
| 22 JAN 1998          | 66.97                      | 5.83                   | 5.83                   | 0.00                    | 61.14                                        |  |  |  |  |
| 15 FEB 1998          | 66.97                      | 5.58                   | 5.58                   | 0.00                    | 61.39                                        |  |  |  |  |
| 02 MAR 1998          | 66.97                      | 5.56                   | 5.56                   | 0.00                    | 61.41                                        |  |  |  |  |
| 18 MAR 1998          | 66.97                      | 5.57                   | 5.57                   | 0.00                    | 61.40                                        |  |  |  |  |
| 14 APR 1998          | 66.97                      | 5.71                   | 5.71                   | 0.00                    | 61.26                                        |  |  |  |  |
| 25 APR 1998          | 66.97                      | 5.61                   | 5.61                   | 0.00                    | 61.36                                        |  |  |  |  |
| 07 MAY 1998          | 66.97                      | 4.07                   | 4.0 7                  | 0.00                    | 62.90                                        |  |  |  |  |
| 20 MAY 1998          | 66.97                      | 5.72                   | 5.72                   | 0.00                    | 61.25                                        |  |  |  |  |
| 09 JUN 1998          | 66.97                      | 5.91                   | 5.91                   | 0.00                    | 61.06                                        |  |  |  |  |
| 16 JUN 1998          | 66.97                      | 4.60                   | 4.60                   | 0.00                    | 62.37                                        |  |  |  |  |
| 30 JUN 1998          | 66.97                      | 5.50                   | 5.50                   | 0.00                    | 61.47                                        |  |  |  |  |
|                      |                            | M                      | IW-51                  |                         |                                              |  |  |  |  |
| 06 JAN 1998          | 73.20                      | 5.62                   | 5.62                   | 0.00                    | 67.58                                        |  |  |  |  |
| 22 JAN 1998          | 73.20                      | 5.07                   | 5.07                   | 0.00                    | 68.13                                        |  |  |  |  |
| 05 FEB 1998          | 73.20                      | 5.10                   | 5.10                   | 0.00                    | 68.10                                        |  |  |  |  |
| 15 FEB 1998          | 73.20                      |                        | Data no                | t available (frozen)    |                                              |  |  |  |  |
| 02 MAR 1998          | 73.20                      | 3.86                   | 3.86                   | 0.00                    | 69.34                                        |  |  |  |  |
| 18 MAR 1998          | 73.20                      | 3.94                   | 3.94                   | 0.00                    | 69.26                                        |  |  |  |  |
| 14 APR 1998          | 73.20                      | 4.21                   | 4.21                   | 0.00                    | 68.99                                        |  |  |  |  |
| 25 APR 1998          | 73.20                      | 4.03                   | 4.03                   | 0.00                    | 69.17                                        |  |  |  |  |
| 07 MAY 1998          | 73.20                      | 2.95                   | 2.95                   | 0.00                    | 70.25                                        |  |  |  |  |
| 20 MAY 1998          | 73.20                      | 4.05                   | 4.05                   | 0.00                    | 69.15                                        |  |  |  |  |
| 09 JUN 1998          | 73.20                      | 4.73                   | 4.73                   | 0.00                    | 68.47                                        |  |  |  |  |
| 16 JUN 1998          | 73.20                      | 3.15                   | 3.15                   | 0.00                    | 70.05                                        |  |  |  |  |
| 30 JUN 1998          | 73.20                      | 3.45                   | 3.45                   | 0.00                    | 69.75                                        |  |  |  |  |

<sup>(</sup>b) Gauging performed at MW-46 in February and May only. MW-49 substituted as alternate downgradient gauging point for MW-46.

| Gauging<br>Data | Well Elevation<br>(ft MSL) | Depth to<br>Water (ft) | Depth to<br>LNAPL (ft) | LNAPL<br>Thickness (ft) | Water Table<br>Elevation (ft) <sup>(a)</sup> |  |  |  |  |
|-----------------|----------------------------|------------------------|------------------------|-------------------------|----------------------------------------------|--|--|--|--|
| MW-54           |                            |                        |                        |                         |                                              |  |  |  |  |
| 06 JAN 1998     | 75.49                      | 6.74                   | 6.74                   | 0.00                    | 68.75                                        |  |  |  |  |
| 22 JAN 1998     | 75.49                      | 6.75                   | 6.75                   | 0.00                    | 68.74                                        |  |  |  |  |
| 05 FEB 1998     | 75.49                      | 6.52                   | 6.52                   | 0.00                    | 68.97                                        |  |  |  |  |
| 15 FEB 1998     | 75.49                      | 6.30                   | 6.30                   | 0.00                    | 69.19                                        |  |  |  |  |
| 02 MAR 1998     | 75.49                      | 5.32                   | 5.32                   | 0.00                    | 70.17                                        |  |  |  |  |
| 18 MAR 1998     | 75.49                      | 5.41                   | 5.41                   | 0.00                    | 70.08                                        |  |  |  |  |
| 14 APR 1998     | 75.49                      | 5.65                   | 5.65                   | 0.00                    | 69.84                                        |  |  |  |  |
| 25 APR 1998     | 75.49                      | 4.40                   | 4.40                   | 0.00                    | 71.09                                        |  |  |  |  |
| 07 MAY 1998     | 75.49                      | 2.90                   | 2.90                   | 0.00                    | 72.59                                        |  |  |  |  |
| 20 MAY 1998     | 75.49                      | 5.52                   | 5.52                   | 0.00                    | 69.97                                        |  |  |  |  |
| 09 JUN 1998     | 75.49                      | 6.32                   | 6.32                   | 0.00                    | 69.17                                        |  |  |  |  |
| 16 JUN 1998     | 75.49                      | 3.05                   | 3.05                   | 0.00                    | 72.44                                        |  |  |  |  |
| 30 JUN 1998     | 75.49                      | 4.57                   | 4.57                   | 0.00                    | 70.92                                        |  |  |  |  |
|                 |                            | M                      | IW-58                  |                         |                                              |  |  |  |  |
| 06 JAN 1998     | 69.80                      | 6.22                   | 6.22                   | 0.00                    | 63.58                                        |  |  |  |  |
| 22 JAN 1998     | 69.80                      | 6.15                   | 6.15                   | 0.00                    | 63.65                                        |  |  |  |  |
| 005 FEB 1998    | 69.80                      | 6.20                   | 6.20                   | 0.00                    | 63.60                                        |  |  |  |  |
| 15 FEB 1998     | 69.80                      | 6.05                   | 6.05                   | 0.00                    | 63.75                                        |  |  |  |  |
| 02 MAR 1998     | 69.80                      | 8.78                   | 8.78                   | 0.00                    | 61.02                                        |  |  |  |  |
| 18 MAR 1998     | 69.80                      | 5.73                   | 5.73                   | 0.00                    | 64.07                                        |  |  |  |  |
| 14 APR 1998     | 69.80                      | 5.94                   | 5.94                   | 0.00                    | 63.86                                        |  |  |  |  |
| 25 APR 1998     | 69.80                      | 4.32                   | 4.32                   | 0.00                    | 65.48                                        |  |  |  |  |
| 07 MAY 1998     | 69.80                      | 5.50                   | 5.50                   | 0.00                    | 64.30                                        |  |  |  |  |
| 20 MAY 1998     | 69.80                      | 5.84                   | 5.84                   | 0.00                    | 63.96                                        |  |  |  |  |
| 09 JUN 1998     | 69.80                      | 6.10                   | 6.10                   | 0.00                    | 63.70                                        |  |  |  |  |
| 16 JUN 1998     | 69.80                      | 5.55                   | 5.55                   | 0.00                    | 64.25                                        |  |  |  |  |
| 30 JUN 1998     | 69.80                      | 5.74                   | 5.74                   | 0.00                    | 64.06                                        |  |  |  |  |
|                 | ····                       |                        | W-61R                  |                         | ***************************************      |  |  |  |  |
| 06 JAN 1998     | 75.52                      | 5.09                   | 5.09                   | 0.00                    | 70.43                                        |  |  |  |  |
| 22 JAN 1998     | 75.52                      | 5.22                   | 5.22                   | 0.00                    | 70.3                                         |  |  |  |  |
| 05 FEB 1998     | 75.52                      | 4.97                   | 4.97                   | 0.00                    | 70.55                                        |  |  |  |  |
| 15 FEB 1998     | 75.52                      | 5.05                   | 5.05                   | 0.00                    | 70.47                                        |  |  |  |  |
| 02 MAR 1998     | 75.52                      | 3.70                   | 3.70                   | 0.00                    | 71.82                                        |  |  |  |  |
| 18 MAR 1998     | 75.52                      | 3.46                   | 3.46                   | 0.00                    | 72.06                                        |  |  |  |  |
| 14 APR 1998     | 75.52                      | 4.41                   | 4.41                   | 0.00                    | 71.11                                        |  |  |  |  |
| 25 APR 1998     | 75.52                      | 3.55                   | 3.55                   | 0.00                    | 71.97                                        |  |  |  |  |
| 07 MAY 1998     | 75.52                      | 3.35                   | 3.35                   | 0.00                    | 72.17                                        |  |  |  |  |
| 20 MAY 1998     | 75.52                      | 4.49                   | 4.49                   | 0.00                    | 71.03                                        |  |  |  |  |
| 09 JUN 1998     | 75.52                      | 4.81                   | 4.81                   | 0.00                    | 70.71                                        |  |  |  |  |
| 16 JUN 1998     | 75.52                      | 3.37                   | 3.37                   | 0.00                    | 72.15                                        |  |  |  |  |
| 30 JUN 1998     | 75.52                      | 3.87                   | 3.87                   | 0.00                    | 71.65                                        |  |  |  |  |

| Gauging     | Well Elevation | Depth to   | Depth to         | LNAPL          | Water Table                   |
|-------------|----------------|------------|------------------|----------------|-------------------------------|
| Data        | (ft MSL)       | Water (ft) | LNAPL (ft) IW-62 | Thickness (ft) | Elevation (ft) <sup>(a)</sup> |
| 06 JAN 1998 | 80.78          | 9.35       | 9.35             | 0.00           | 71.43                         |
| 22 JAN 1998 | 80.78          | 9.85       | 9.85             | 0.00           | 70.93                         |
| 05 FEB 1998 | 80.78          | 8.82       | 8.82             | 0.00           | 71.96                         |
| 15 FEB 1998 | 80.78          | 8.40       | 8.40             | 0.00           | 72.38                         |
| 02 MAR 1998 | 80.78          | 7.75       | 7.75             | 0.00           | 73.03                         |
| 18 MAR 1998 | 80.78          | 8.02       | 8.02             | 0.00           | 72.76                         |
| 14 APR 1998 | 80.78          | 8.35       | 8.35             | 0.00           | 72.43                         |
| 25 APR 1998 | 80.78          | 6.97       | 6.97             | 0.00           | 73.81                         |
| 07 MAY 1998 | 80.78          | 7.59       | 7.59             | 0.00           | 73.19                         |
| 20 MAY 1998 | 80.78          | 8.20       | 8.20             | 0.00           | 72.58                         |
| 09 JUN 1998 | 80.78          | 8.92       | 8.92             | 0.00           | 71.86                         |
| 16 JUN 1998 | 80.78          | 7.71       | 7.71             | 0.00           | 73.07                         |
| 30 JUN 1998 | 80.78          | 7.97       | 7.97             | 0.00           | 72.81                         |
|             |                | MW-I       | NASB-211         |                |                               |
| 06 JAN 1998 | 75.55          | 7.93       | 7.93             | 0.00           | 67.62                         |
| 22 JAN 1998 | 75.55          | 8.73       | 8.73             | 0.00           | 66.82                         |
| 05 FEB 1998 | 75.55          | 7.25       | 7.25             | 0.00           | 68.3                          |
| 15 FEB 1998 | 75.55          | 8.40       | 8.40             | 0.00           | 67.15                         |
| 02 MAR 1998 | 75.55          | 7.00       | 7.00             | 0.00           | 68.55                         |
| 18 MAR 1998 | 75.55          | 6.22       | 6.22             | 0.00           | 69.33                         |
| 14 APR 1998 | 75.55          | 6.32       | 6.32             | 0.00           | 69.23                         |
| 25 APR 1998 | 75.55          | 5.72       | 5.72             | 0.00           | 69.83                         |
| 07 MAY 1998 | 75.55          | 4.26       | 4.26             | 0.00           | 71.29                         |
| 20 MAY 1998 | 75.55          | 6.15       | 6.15             | 0.00           | 69.4                          |
| 09 JUN 1998 | 75.55          | 7.19       | 7.19             | 0.00           | 68.36                         |
| 16 JUN 1998 | 75.55          | 3.89       | 3.89             | 0.00           | 71.66                         |
| 30 JUN 1998 | 75.55          | 4.95       | 4.95             | 0.00           | 70.60                         |
|             |                | MW-N       | NASB-213         |                |                               |
| 06 JAN 1998 | 76.81          | 7.55       | 7.55             | 0.00           | 69.26                         |
| 22 JAN 1998 | 76.81          | 6.89       | 6.89             | 0.00           | 69.92                         |
| 05 FEB 1998 | 76.81          | 6.70       | 6.70             | 0.00           | 70.11                         |
| 15 FEB 1998 | 76.81          | 6.45       | 6.45             | 0.00           | 70.36                         |
| 02 MAR 1998 | 76.81          | 5.99       | 5.99             | 0.00           | 70.82                         |
| 18 MAR 1998 | 76.81          | 4.44       | 4.44             | 0.00           | 72.37                         |
| 14 APR 1998 | 76.81          | 4.99       | 4.99             | 0.00           | 71.82                         |
| 25 APR 1998 | 76.81          | 4.35       | 4.35             | 0.00           | 72.46                         |
| 07 MAY 1998 | 76.81          | 3.30       | 3.30             | 0.00           | 73.51                         |
| 20 MAY 1998 | 76.81          | 4.58       | 4.58             | 0.00           | 72.23                         |
| 09 JUN 1998 | 76.81          | 5.75       | 5.75             | 0.00           | 71.06                         |
| 16 JUN 1998 | 76.81          | 4.01       | 4.01             | 0.00           | 72.80                         |
| 30 JUN 1998 | 76.81          | 4.18       | 4.18             | 0.00           | 72.63                         |

Table 3-2 November 1998

TABLE 3-2 SUMMARY OF WATER QUALITY INDICATOR PARAMETER MEASUREMENTS COLLECTED FROM 6 JANUARY THROUGH 30 JUNE 1998 OLD NAVY FUEL FARM, NAVAL AIR STATION, BRUNSWICK, MAINE

| Date         | pН         | Temperature (°C) | Dissolved<br>Oxygen (mg/L) | Conductivity (µhmos) | Redox (mV) |  |  |  |  |
|--------------|------------|------------------|----------------------------|----------------------|------------|--|--|--|--|
| WP-1         |            |                  |                            |                      |            |  |  |  |  |
| 06 JAN 1998  | 5.49       | 4.85             | 5.56                       | 187                  | 204        |  |  |  |  |
| 22 JAN 1998  | 5.74       | 3.13             | 5.09                       | 218                  | 140        |  |  |  |  |
| 05 FEB 1998  | 5.59       | 4.20             | 7.43                       | 338                  | 146        |  |  |  |  |
| 15 FEB 1998  | 5.56       | 3.39             | 2.21                       | 291                  | 180        |  |  |  |  |
| 02 MAR 1998  | 5.68       | 1.27             | 9.27                       | 239                  | 189        |  |  |  |  |
| 18 MAR 1998  | 6.08       | 0.60             | 9.75                       | 160                  | 168        |  |  |  |  |
| 14 APR 1998  | 5.65       | 5.57             | 5.79                       | 265                  | 158        |  |  |  |  |
| 25 APR 1998  | 5.94       | 8.75             | 3.11                       | 88                   | 185        |  |  |  |  |
| 07 MAY 1998  | 5.96       | 11.63            | 8.12                       | 202                  | 223        |  |  |  |  |
| 21 MAY 1998  | 5.76       | 10.60            | 0.41                       | 284                  | 160        |  |  |  |  |
| 09 JUN 1998  | 5.69       | 14.18            | 1.01                       | 393                  | -4         |  |  |  |  |
| 16 JUN 1998  | 6.80       | 15.45            | 2.60                       | 137                  | 212        |  |  |  |  |
| 30 JUN 1998  | 6.21       | 18.51            | 5.42                       | 181                  | 136        |  |  |  |  |
|              |            |                  | WP-2                       |                      |            |  |  |  |  |
| 06 JAN 1998  | 5.83       | 3.15             | 5.28                       | 96                   | 194        |  |  |  |  |
| 22 JAN 1998  | 5.93       | 3.28             | 5.49                       | 117                  | 176        |  |  |  |  |
| 05 FEB 1998  | 5.89       | 3.33             | 5.38                       | 103                  | 144        |  |  |  |  |
| 15 FEB 1998  | 6.32       | 2.79             | 3.89                       | 22                   | 141        |  |  |  |  |
| 02 MAR 1998  | 5.62       | 2.65             | 5.86                       | 94                   | 215        |  |  |  |  |
| 18 MAR 1998  | 6.08       | 2.12             | 9.55                       | 85                   | 199        |  |  |  |  |
| 14 APR 1998  | 5.95       | 6.17             | 6.02                       | 140                  | 143        |  |  |  |  |
| 25 APR 1998  | 5.95       | 8.81             | 3.39                       | 176                  | 154        |  |  |  |  |
| 07 MAY 1998  | 6.04       | 11.95            | 8.34                       | 97                   | 199        |  |  |  |  |
| 21 MAY 1998  | 6.09       | 11.13            | 0.79                       | 148                  | 161        |  |  |  |  |
| 09 JUN 1998  | 5.79       | 13.66            | 1.83                       | 156                  | 27         |  |  |  |  |
| 16 JUN 1998  | 6.86       | 16.06            | 3.62                       | ` 65                 | 172        |  |  |  |  |
| 30 JUN 1998  | 6.02       | 17.05            | 4.05                       | 208                  | 121        |  |  |  |  |
| NOTE: LNAPL: | = Light, n | on-aqueous phase | liquid; MSL = Mean         | sea level.           |            |  |  |  |  |

|             |       | Temperature | Dissolved     | Conductivity |            |  |  |  |
|-------------|-------|-------------|---------------|--------------|------------|--|--|--|
| Date        | pН    | (°C)        | Oxygen (mg/L) | (µhmos)      | Redox (mV) |  |  |  |
| WP-3        |       |             |               |              |            |  |  |  |
| 06 JAN 1998 | 5.69  | 5.37        | 5.81          | 39           | 162        |  |  |  |
| 22 JAN 1998 | 5.47  | 4.88        | 2.86          | 49           | 181        |  |  |  |
| 05 FEB 1998 | 5.45  | 4.63        | 5.22          | 43           | 167        |  |  |  |
| 15 FEB 1998 | 5.60  | 4.22        | 3.13          | 43           | 176        |  |  |  |
| 02 MAR 1998 | 6.46  | 1.63        | 10.97         | 31           | 183        |  |  |  |
| 18 MAR 1998 | 6.15  | 2.95        | 6.45          | 46           | 185        |  |  |  |
| 14 APR 1998 | 5.72  | 5.67        | 6.26          | 47           | 171        |  |  |  |
| 25 APR 1998 | 6.01  | 8.32        | 4.98          | 45           | 180        |  |  |  |
| 07 MAY 1998 | 5.98  | 11.32       | 8.85          | 58           | 206        |  |  |  |
| 21 MAY 1998 | 5.51  | 12.16       | 1.13          | 48           | 195        |  |  |  |
| 09 JUN 1998 | 5.64  | 13.94       | 4.58          | 56           | 90         |  |  |  |
| 16 JUN 1998 | 6.88  | 15.52       | 4.73          | 50           | 174        |  |  |  |
| 30 JUN 1998 | 6.15_ | 15.64       | 3.20          | 61           | 105        |  |  |  |
|             |       |             | WP-4          |              |            |  |  |  |
| 06 JAN 1998 | 6.13  | 5.39        | 6.92          | 120          | 173        |  |  |  |
| 22 JAN 1998 | 6.19  | 4.53        | 2.81          | 178          | 141        |  |  |  |
| 05 FEB 1998 | 5.82  | 3.90        | 7.05          | 158          | 114        |  |  |  |
| 15 FEB 1998 | 5.89  | 3.02        | 2.87          | 145          | 70         |  |  |  |
| 02 MAR 1998 | 5.67  | 1.75        | 9.84          | 105          | 191        |  |  |  |
| 18 MAR 1998 | 6.49  | 3.19        | 10.39         | 94           | 250        |  |  |  |
| 14 APR 1998 | 5.76  | 6.54        | 7.00          | 115          | 152        |  |  |  |
| 25 APR 1998 | 5.86  | 7.53        | 5.97          | 91           | 150        |  |  |  |
| 07 MAY 1998 | 6.45  | 11.92       | 8.35          | 48           | 212        |  |  |  |
| 21 MAY 1998 | 5.88  | 10.29       | 0.62          | 138          | 191        |  |  |  |
| 09 JUN 1998 | 5.86  | 12.73       | 0.51          | 193          | -2         |  |  |  |
| 16 JUN 1998 | 6.61  | 16.01       | 3.41          | 62           | 122        |  |  |  |
| 30 JUN 1998 | 6.25  | 18.35       | 3.98          | 122          | 107        |  |  |  |
|             |       |             | WP-5          |              |            |  |  |  |
| 06 JAN 1998 | 5.18  | 5.74        | 6.28          | 29           | 201        |  |  |  |
| 22 JAN 1998 | 5.38  | 5.57        | 3.69          | 63           | 217        |  |  |  |
| 05 FEB 1998 | 5.42  | 4.70        | 6.06          | 77           | 144        |  |  |  |
| 15 FEB 1998 | 5.42  | 4.37        | 4.94          | 75           | 194        |  |  |  |
| 02 MAR 1998 | 5.65  | 4.58        | 5.05          | 86           | 194        |  |  |  |
| 18 MAR 1998 | 5.99  | 4.37        | 7.83          | 88           | 167        |  |  |  |
| 14 APR 1998 | 5.50  | 6.13        | 2.92          | 83           | 171        |  |  |  |
| 25 APR 1998 | 5.90  | 7.03        | 6.87          | 79           | 233        |  |  |  |
| 07 MAY 1998 | 6.27  | 11.66       | 10.14         | 38           | 194        |  |  |  |
| 21 MAY 1998 | 5.50  | 8.98        | 0.77          | 70           | 178        |  |  |  |
| 09 JUN 1998 | 5.76  | 11.61       | 2.05          | 91           | 35         |  |  |  |
| 16 JUN 1998 | 6.90  | 16.21       | 6.88          | 36           | 169        |  |  |  |
| 30 JUN 1998 | 6.34  | 14.18       | 3.54          | 64           | 186        |  |  |  |

|             | 1    | T                | D: 1 1                  | G 1 .: ::                 | <u> </u>     |  |  |
|-------------|------|------------------|-------------------------|---------------------------|--------------|--|--|
| Date        | pН   | Temperature (°C) | Dissolved Oxygen (mg/L) | Conductivity $(\mu hmos)$ | Redox (mV)   |  |  |
| Date        | pii  | ( 0)             |                         | (µmios)                   | Redux (IIIV) |  |  |
| WP-6        |      |                  |                         |                           |              |  |  |
| 06 JAN 1998 | 5.87 | 5.46             | 6.98                    | 32                        | 191          |  |  |
| 22 JAN 1998 | 5.55 | 4.74             | 3.31                    | . 77                      | 149          |  |  |
| 05 FEB 1998 | 5.72 | 4.55             | 4.47                    | 70<br>-                   | 147          |  |  |
| 15 FEB 1998 | 5.68 | 4.36             | 3.56                    | 76                        | 140          |  |  |
| 02 MAR 1998 | 5.30 | 3.16             | 6.10                    | 72                        | 229          |  |  |
| 18 MAR 1998 | 6.38 | 2.54             | 8.78                    | 45                        | 175          |  |  |
| 14 APR 1998 | 5.85 | 4.94             | 5.05                    | 50                        | 164          |  |  |
| 25 APR 1998 | 5.74 | 6.88             | 5.00                    | 53                        | 184          |  |  |
| 07 MAY 1998 | 6.12 | 11.70            | 9.52                    | 28                        | 191          |  |  |
| 21 MAY 1998 | 5.69 | 8.38             | 0.43                    | 51                        | 174          |  |  |
| 09 JUN 1998 | 5.6  | 11.27            | 1.83                    | 82                        | 68           |  |  |
| 16 JUN 1998 | 6.85 | 15.49            | 4.27                    | 25                        | 175          |  |  |
| 30 JUN 1998 | 6.41 | 16.20            | 4.20                    | 39                        | 89           |  |  |
|             |      |                  | WP-7                    |                           |              |  |  |
| 06 JAN 1998 | 5.69 | 3.6              | 6.12                    | 93                        | 78           |  |  |
| 22 JAN 1998 | 5.83 | 3.61             | 2.9                     | 193                       | 59           |  |  |
| 05 FEB 1998 |      |                  | Data not available (    | blocked)                  |              |  |  |
| 15 FEB 1998 |      |                  | Data not available (    | blocked)                  |              |  |  |
| 02 MAR 1998 | 6.11 | 0.99             | 6.04                    | 89                        | 199          |  |  |
| 18 MAR 1998 | 6.40 | 1.53             | 9.67                    | 104                       | 174          |  |  |
| 14 APR 1998 | 5.74 | 6.15             | 7.00                    | 240                       | 107          |  |  |
| 25 APR 1998 | 5.79 | 8.29             | 2.05                    | 165                       | 177          |  |  |
| 07 MAY 1998 | 6.05 | 12.02            | 9.15                    | 116                       | 227          |  |  |
| 21 MAY 1998 | 5.74 | 12.06            | 0.84                    | 240                       | 179          |  |  |
| 09 JUN 1998 | 5.74 | 12.51            | 1.48                    | 250                       | -19          |  |  |
| 16 JUN 1998 | 6.65 | 14.33            | 3.45                    | 123                       | 175          |  |  |
| 30 JUN 1998 | 6.09 | 17.9             | 2.90                    | 204                       | 112          |  |  |
|             | ,    |                  | WP-8                    |                           |              |  |  |
| 06 JAN 1998 | 6.01 | 4.74             | 5.28                    | 167                       | 172          |  |  |
| 22 JAN 1998 | 6.04 | 3.78             | 6.69                    | 224                       | 187          |  |  |
| 05 FEB 1998 | 5.66 | 3.19             | 12.79                   | 189                       | 100          |  |  |
| 15 FEB 1998 | 5.61 | 2.85             | 8.48                    | 105                       | 191          |  |  |
| 02 MAR 1998 | 6.28 | 3.25             | 9.73                    | 91                        | 186          |  |  |
| 18 MAR 1998 | 6.21 | 3.24             | 10.95                   | 162                       | 175          |  |  |
| 14 APR 1998 | 5.69 | 5.97             | 11.68                   | 188                       | 169          |  |  |
| 25 APR 1998 | 5.66 | 8.00             | 9.67                    | 179                       | 160          |  |  |
| 07 MAY 1998 | 6.09 | 11.40            | 11.19                   | 235                       | 229          |  |  |
| 21 MAY 1998 | 6.02 | 10.38            | 0.57                    | 300                       | 173          |  |  |
| 09 JUN 1998 | 5.90 | 13.36            | 2.33                    | 382                       | 90           |  |  |
| 16 JUN 1998 | 6.55 | 13.84            | 1.96                    | 221                       | 146          |  |  |
| 30 JUN 1998 | 6.02 | 16.91            | 2.22                    | 293                       | 114          |  |  |

|             |      | Temperature | Dissolved            | Conductivity |            |
|-------------|------|-------------|----------------------|--------------|------------|
| Date        | pН   | (°C)        | Oxygen (mg/L)        | (µhmos)      | Redox (mV) |
|             |      |             | WP-9                 |              |            |
| 06 JAN 1998 |      |             | Data not available   | e (dry)      |            |
| 22 JAN 1998 |      |             | Data not available   | e (dry)      |            |
| 05 FEB 1998 |      |             | Data not available   | e (dry)      |            |
| 15 FEB 1998 |      |             | Data not available   | e (dry)      |            |
| 02 MAR 1998 |      |             | Data not available   | e (dry)      |            |
| 18 MAR 1998 | 6.44 | 4.37        | 9.66                 | 126          | 252        |
| 14 APR 1998 | 6.00 | 6.59        | 9.17                 | 157          | 169        |
| 25 APR 1998 | 6.09 | 8.31        | 7.35                 | 108          | 153        |
| 07 MAY 1998 | 6.24 | 10.13       | 11.16                | 120          | 223        |
| 21 MAY 1998 | 5.99 | 11.27       | 4.45                 | 138          | 183        |
| 09 JUN 1998 | 5.88 | 13.13       | 4.67                 | 212          | 82         |
| 16 JUN 1998 | 6.48 | 15.97       | 8.24                 | 113          | 127        |
| 30 JUN 1998 | 6.24 | 16.58       | 5.36                 | 147          | 112        |
|             |      |             | WP-10                |              |            |
| 06 JAN 1998 | 5.05 | 7.98        | 6.58                 | 58           | 204        |
| 22 JAN 1998 | 5.04 | 6.56        | 3.86                 | 70           | 253        |
| 05 FEB 1998 | 5.86 | 6.24        | 6.26                 | 64           | 156        |
| 15 FEB 1998 | 5.37 | 5.22        | 6.79                 | 66           | 253        |
| 02 MAR 1998 | 5.53 | 5.46        | 6.81                 | 41           | 197        |
| 18 MAR 1998 | 7.02 | 2.15        | 11.50                | 28           | 249        |
| 14 APR 1998 | 5.60 | 5.71        | 2.36                 | 58           | 173        |
| 25 APR 1998 | 6.18 | 7.41        | 6.67                 | 60           | 314        |
| 07 MAY 1998 | 6.52 | 11.86       | 9.00                 | 29           | 227        |
| 21 MAY 1998 | 6.54 | 8.70        | 1.50                 | 60           | 253        |
| 09 JUN 1998 | 5.31 | 10.13       | 2.73                 | 78           | 181        |
| 16 JUN 1998 | 6.91 | 16.34       | 5.49                 | 31           | 254        |
| 30 JUN 1998 | 6.82 | 18.08       | 5.70                 | 40           | 187        |
|             |      |             | WP-11                |              |            |
| 06 JAN 1998 | 5.58 | 4.36        | 6.91                 | 53           | 208        |
| 22 JAN 1998 | 5.92 | 4.20        | 4.34                 | 54           | 127        |
| 05 FEB 1998 |      |             | Data not available ( | (frozen)     |            |
| 15 FEB 1998 |      |             | Data not available ( | (frozen)     |            |
| 02 MAR 1998 |      |             | Data not available   | e (dry)      |            |
| 18 MAR 1998 | 6.66 | 2.38        | 11.05                | 60           | 248        |
| 14 APR 1998 | 6.02 | 5.82        | 7.73                 | 90           | 165        |
| 25 APR 1998 | 6.37 | 7.53        | 6.39                 | 105          | 173        |
| 07 MAY 1998 | 6.09 | 11.95       | 8.58                 | 62           | 224        |
| 21 MAY 1998 | 5.94 | 10.18       | 0.52                 | 107          | 154        |
| 09 JUN 1998 | 5.75 | 12.76       | 0.62                 | 144          | -13        |
| 16 JUN 1998 | 6.75 | 15.75       | 2.23                 | 69           | 189        |
| 30 JUN 1998 | 6.08 | 17.30       | 5.13                 | 129          | 116        |

|             | I        | Townsortung      | Dissolved              | Conductivity              |                |
|-------------|----------|------------------|------------------------|---------------------------|----------------|
| Date        | pН       | Temperature (°C) | Oxygen (mg/L)          | Conductivity $(\mu hmos)$ | Redox (mV)     |
|             | <u> </u> | 1 ( 5/           | WP-12                  | (January)                 | Treden (III v) |
| 06 JAN 1998 |          | <del></del>      | Data not available     | e (dry)                   |                |
| 22 JAN 1998 |          |                  | Data not available     | · · ·                     |                |
| 05 FEB 1998 |          |                  | Data not available     | =                         |                |
| 15 FEB 1998 |          |                  | Data not available     | . •                       |                |
| 02 MAR 1998 | 5.77     | 4.04             | 7.09                   | 39                        | 175            |
| 18 MAR 1998 | 6.50     | 3.18             | 11.10                  | 85                        | 252            |
| 14 APR 1998 | 6.34     | 5.77             | 1.71                   | 82                        | 143            |
| 25 APR 1998 | 5.98     | 6.97             | 2.76                   | 78                        | 120            |
| 07 MAY 1998 | 6.35     | 11.74            | 10.44                  | 39                        | 221            |
| 21 MAY 1998 | 5.71     | 10.40            | 0.40                   | 127                       | 198            |
| 09 JUN 1998 | 5.73     | 13.35            | 4.01                   | 141                       | 73             |
| 16 JUN 1998 | 6.29     | 15.78            | 3.27                   | 108                       | 126            |
| 30 JUN 1998 | 5.86     | 16.96            | 3.15                   | 174                       | 145            |
|             |          | 20.20            | WP-13                  |                           |                |
| 06 JAN 1998 | 6.27     | 1.24             | 9.89                   | 41                        | 174            |
| 22 JAN 1998 |          |                  | Data not available     | (frozen)                  |                |
| 05 FEB 1998 |          |                  | Data not available     |                           | •              |
| 15 FEB 1998 |          |                  | Data not available     |                           |                |
| 02 MAR 1998 | 5.99     | 1.77             | 7.19                   | 47                        | 186            |
| 18 MAR 1998 | 6.66     | 2.61             | 5.02                   | 36                        | 247            |
| 14 APR 1998 | 6.16     | 6.21             | 1.54                   | 45                        | 152            |
| 25 APR 1998 | 6.38     | 8.31             | 1.79                   | 50                        | 180            |
| 07 MAY 1998 | 6.74     | 11.78            | 7.93                   | 49                        | 221            |
| 21 MAY 1998 | 6.45     | 10.97            | 0.58                   | 63                        | 167            |
| 09 JUN 1998 | 6.17     | 13.50            | 3.58                   | 74                        | 67             |
| 16 JUN 1998 |          | 1                | Data not available (be | ent casing)               |                |
| 30 JUN 1998 |          |                  | Data not available (be | ent casing)               |                |
|             |          |                  | WP-14                  |                           |                |
| 06 JAN 1998 | 7.03     | 6.27             | 9.12                   | 19                        | 153            |
| 22 JAN 1998 | 5.53     | 4.66             | 3.17                   | 67                        | 207            |
| 05 FEB 1998 |          |                  | Data not available (   | (frozen)                  |                |
| 15 FEB 1998 |          |                  | Data not available (   | (frozen)                  | 1              |
| 02 MAR 1998 | 5.40     | 3.96             | 3.01                   | 168                       | 186            |
| 18 MAR 1998 | 6.88     | 2.53             | 11.79                  | 40                        | 246            |
| 14 APR 1998 | 5.88     | 6.21             | 2.39                   | 117                       | 183            |
| 25 APR 1998 | 5.97     | 7.78             | 3.01                   | 137                       | 120            |
| 07 MAY 1998 | 8.66     | 11.33            | 7.01                   | 51                        | 167            |
| 21 MAY 1998 | 5.67     | 10.70            | 0.80                   | 104                       | 212            |
| 09 JUN 1998 | 5.78     | 12.40            | 2.37                   | 146                       | 170            |
| 16 JUN 1998 | 6.95     | 16.23            | 6.82                   | 56                        | 257            |
| 30 JUN 1998 | 6.96     | 17.35            | 5.33                   | 72                        | 183            |

| Date           | pН       | Temperature<br>(°C) | Dissolved<br>Oxygen (mg/L) | Conductivity (µhmos) | Redox (mV)   |  |  |  |
|----------------|----------|---------------------|----------------------------|----------------------|--------------|--|--|--|
| Date           | pii      | ( )                 |                            | (иппоз)              | Redox (IIIV) |  |  |  |
| WP-15          |          |                     |                            |                      |              |  |  |  |
| 06 JAN 1998    | 5.89     | 5.09                | 6.96                       | 26                   | 193          |  |  |  |
| 22 JAN 1998    | 5.65     | 4.66                | 5.82                       | 78                   | 166          |  |  |  |
| 05 FEB 1998    | 5.98     | 4.11                | 9.33                       | 69                   | 187          |  |  |  |
| 15 FEB 1998    | 5.80     | 3.36                |                            | 68                   | 222          |  |  |  |
| 02 MAR 1998    | 5.89     | 3.35                | 5.04                       | 73                   | 212          |  |  |  |
| 18 MAR 1998    | 6.75     | 2.92                | 11.86                      | 63                   | 249          |  |  |  |
| 14 APR 1998    | 5.81     | 6.67                | 6.29                       | 61                   | 151          |  |  |  |
| 25 APR 1998    | 5.43     | 6.98                | 4.38                       | 50                   | 157          |  |  |  |
| 07 MAY 1998    | 6.22     | 11.29               | 10.72                      | 42                   | 219          |  |  |  |
| 21 MAY 1998    | 6.04     | 11.31               | 9.47                       | 54                   | 170          |  |  |  |
| 09 JUN 1998    | 5.77     | 12.70               | 8.66                       | 73                   | 109          |  |  |  |
| 16 JUN 1998    | 6.89     | 15.05               | 9.31                       | 47                   | 181          |  |  |  |
| 30 JUN 1998    | 6.36     | 16.58               | 9.62                       | 41                   | 98           |  |  |  |
|                |          |                     | WP-16R                     |                      |              |  |  |  |
| 22 JAN 1998    |          |                     | Data not available (       | frozen)              |              |  |  |  |
| 05 FEB 1998    |          |                     | Data not available (       | frozen)              |              |  |  |  |
| 15 FEB 1998    |          |                     | Data not available (       | frozen)              |              |  |  |  |
| 02 MAR 1998    | 11.94    | 7.47                | 11.76                      | 413                  | 2.5          |  |  |  |
| 18 MAR 1998    | 7.99     | 5.36                | 9.60                       | 157                  | 116          |  |  |  |
| 07 MAY 1998    | 10.03    | 11.24               | 10.39                      | 269                  | 123          |  |  |  |
| 21 MAY 1998    | 9.54     | 12.13               | 1.37                       | 344                  | 64           |  |  |  |
| 09 JUN 1998    | 6.41     | 14.10               | 3.86                       | 465                  | 100          |  |  |  |
| 16 JUN 1998    | 8.81     | 11.87               | 2.53                       | 391                  | 60           |  |  |  |
| 30 JUN 1998    | 8.90     | 14.12               | 6.64                       | 432                  | 83           |  |  |  |
|                |          |                     | WP-17R                     |                      |              |  |  |  |
| 22 JAN 1998    |          |                     | Data not available (       | frozen)              |              |  |  |  |
| 05 FEB 1998    |          |                     | Data not available (       | frozen)              |              |  |  |  |
| 15 FEB 1998    |          |                     | Data not available (       | frozen)              |              |  |  |  |
| 02 MAR 1998    |          | Data                | a not available (insuff    | icient water)        |              |  |  |  |
| 18 MAR 1998    | 8.80     | 4.92                | 9.61                       | 94                   | 114          |  |  |  |
| 07 MAY 1998    | 5.78     | 10.05               | 8.16                       | 105                  | 233          |  |  |  |
| 21 MAY 1998    | 9.38     | 13.54               | 2.08                       | 143                  | 77           |  |  |  |
| 09 JUN 1998    | 5.97     | 15.71               | 6.63                       | 81                   | 122          |  |  |  |
| 16 JUN 1998    | 6.53     | 12.37               | 2.84                       | 140                  | 28           |  |  |  |
| 30 JUN 1998    | 6.08     | 13.79               | 8.69                       | 178                  | 176          |  |  |  |
| NOTE: Dashes ( | ) indica | te data unavailable | e due to field instrum     | ent problem.         |              |  |  |  |

| <u></u>     |       | T                | D'andard                | Construction              |            |
|-------------|-------|------------------|-------------------------|---------------------------|------------|
| Dota        | pH    | Temperature (°C) | Dissolved Oxygen (mg/L) | Conductivity $(\mu hmos)$ | Podov (mV) |
| Date        | pri   | 1 ( C)           |                         | (µmnos)                   | Redox (mV) |
|             |       |                  | WP-18R                  |                           |            |
| 22 JAN 1998 |       |                  | Data not available      |                           |            |
| 05 FEB 1998 |       |                  | Data not available      |                           |            |
| 15 FEB 1998 |       |                  | Data not available      |                           |            |
| 18 MAR 1998 | 8.98  | 5.15             | 12.56                   | 79                        | 113        |
| 07 MAY 1998 | 9.21  | 11.29            | 11.63                   | 134                       | 136        |
| 21 MAY 1998 | 6.62  | 16.12            | 9.74                    | 168                       | 176        |
| 09 JUN 1998 | 7.13  | 16.28            | 9.90                    | 202                       | 1          |
| 16 JUN 1998 | 6.54  | 14.07            | 10.61                   | 156                       | 195        |
| 30 JUN 1998 | 7.64  | 11.87            | 9.47                    | 166                       | -72        |
|             |       |                  | WP-20                   |                           |            |
| 06 JAN 1998 | 6.36  | 1.57             | 10.12                   | 32                        | 174        |
| 22 JAN 1998 | 6.12  | 2.48             | 10.58                   | 249                       | 181        |
| 05 FEB 1998 | 6.00  | 2.10             | 10.60                   | 214                       | 175        |
| 15 FEB 1998 | 6.03  | 1.62             | 10.50                   | 61                        | 178        |
| 02 MAR 1998 | 6.00  | 2.02             | 8.66                    | 71                        | 194        |
| 18 MAR 1998 | 6.77  | 2.27             | 11.22                   | 40                        | 234        |
| 14 APR 1998 | 5.81  | 6.10             | 4.77                    | 477                       | 176        |
| 25 APR 1998 | 6.71  | 8.31             | 3.99                    | 397                       | 180        |
| 07 MAY 1998 | 6.17  | 11.30            | 9.97                    | 68                        | 233        |
| 21 MAY 1998 | 6.06  | 12.01            | 3.12                    | 392                       | 184        |
| 09 JUN 1998 |       |                  | Well point destr        | oyed                      |            |
| 16 JUN 1998 |       |                  | Well point destr        | royed                     |            |
| 30 JUN 1998 |       |                  | Well point destr        | oyed                      |            |
|             |       |                  | WP-21                   |                           |            |
| 22 JAN 1998 |       |                  | Data not available      | (frozen)                  |            |
| 05 FEB 1998 |       |                  | Data not available      | (frozen)                  |            |
| 15 FEB 1998 |       |                  | Data not available      | (frozen)                  |            |
| 02 MAR 1998 |       |                  | Data not available (    | blocked)                  |            |
| 18 MAR 1998 | 6.90  | 5.78             | 9.93                    | 41                        | 145        |
| 07 MAY 1998 | 9.70  | 10.60            | 9.10                    | 34                        | 121        |
| 21 MAY 1998 | 6.10  | 12.18            | 2.92                    | 146                       | 182        |
| 09 JUN 1998 | 7.50  | 12.56            | 3.76                    | 186                       | -92        |
| 16 JUN 1998 | 6.08  | 12.60            | 2.51                    | 101                       | 136        |
| 30 JUN 1998 | 8.27  | 13.90            | 6.55                    | 209                       | -160       |
|             |       |                  | WP-22                   |                           |            |
| 22 JAN 1998 |       |                  | Data not available      | (frozen)                  |            |
| 05 FEB 1998 |       |                  | Data not available      |                           |            |
| 15 FEB 1998 |       |                  | Data not available      | •                         |            |
| 02 MAR 1998 |       |                  | Data not available (    |                           |            |
| 18 MAR 1998 | 9.02  | 4.40             | 8.83                    | 110                       | 101        |
| 07 MAY 1998 | 10.33 | 10.68            | 7.01                    | 485                       | 95         |
| 21 MAY 1998 | 11.40 | 15.50            | 3.07                    | 1,067                     | -34        |
| 09 JUN 1998 | 11.24 | 12.95            | 2.77                    | 1,292                     | -68        |
| 16 JUN 1998 | 11.25 | 12.61            | 3.00                    | 1,041                     | -51        |
| 30 JUN 1998 | 10.43 | 14.3             | 4.96                    | 1,080                     | -51<br>296 |

| ſ            | T                        | Tommorotuma      | Dissolved          | Candyativity              |               |  |  |  |  |  |
|--------------|--------------------------|------------------|--------------------|---------------------------|---------------|--|--|--|--|--|
| Date         | pH                       | Temperature (°C) | Oxygen (mg/L)      | Conductivity $(\mu hmos)$ | Redox (mV)    |  |  |  |  |  |
| Bate         | 1 P11                    | ( 0)             | MW-43              | (pillios)                 | _ Accor (m v) |  |  |  |  |  |
| 06 JAN 1998  |                          |                  | Data not available | a (dru)                   |               |  |  |  |  |  |
| 22 JAN 1998  | Data not available (dry) |                  |                    |                           |               |  |  |  |  |  |
| 05 FEB 1998  |                          |                  | Data not available |                           |               |  |  |  |  |  |
| 15 FEB 1998  |                          |                  | Data not available | • •                       |               |  |  |  |  |  |
| 02 MAR 1998  |                          | 2.37             | 11.67              | 28                        | 49            |  |  |  |  |  |
| 18 MAR 1998  | 6.68                     | 2.50             | 13.42              | 20                        | 237           |  |  |  |  |  |
| 14 APR 1998  | 6.11                     | 4.84             | 3.26               | 191                       | 172           |  |  |  |  |  |
| 25 APR 1998  | 6.20                     | 7.79             | 3.78               | 142                       | 180           |  |  |  |  |  |
| 20 MAY 1998  | 5.74                     | 12.01            | 1.07               | 21                        | 197           |  |  |  |  |  |
| 09 JUN 1998  | 3.74                     | 12.01            | Data not available |                           | 197           |  |  |  |  |  |
| 16 JUN 1998  | 6.61                     | 15.49            | 9.82               | 29                        | 163           |  |  |  |  |  |
| 30 JUN 1998  | 6.25                     | 17.34            | 8.92               | 39                        | 133           |  |  |  |  |  |
| 30 3014 1220 | 0.23                     | 17.54            | MW-44              |                           | 133           |  |  |  |  |  |
| 06 JAN 1998  | 5.80                     | 4.91             | 5.68               | 51                        | 188           |  |  |  |  |  |
| 22 JAN 1998  | 5.97                     | 4.95             | 3.51               | 71                        | 127           |  |  |  |  |  |
| 05 FEB 1998  | 5.75                     | 4.75             | 5.35               | 62                        | 131           |  |  |  |  |  |
| 15 FEB 1998  | 5.92                     | 4.68             | 3.28               | 61                        | 159           |  |  |  |  |  |
| 02 MAR 1998  | 8.67                     | 7.63             | 5.23               | 259                       | 120           |  |  |  |  |  |
| 18 MAR 1998  | 6.21                     | 1.86             | 5.46               | 38                        | 196           |  |  |  |  |  |
| 14 APR 1998  | 6.08                     | 5.94             | 5.49               | 43                        | 140           |  |  |  |  |  |
| 25 APR 1998  | 6.26                     | 7.76             | 4.96               | 42                        | 150           |  |  |  |  |  |
| 07 MAY 1998  | 6.28                     | 7.45             | 7.27               | 47                        | 183           |  |  |  |  |  |
| 20 MAY 1998  | 6.81                     | 11.19            | 1.40               | 47                        | 180           |  |  |  |  |  |
| 09 JUN 1998  | 6.13                     | 14.11            | 4.04               | 60                        | 59            |  |  |  |  |  |
| 16 JUN 1998  | 6.96                     | 15.75            | 5.54               | 54                        | 165           |  |  |  |  |  |
| 30 JUN 1998  | 6.61                     | 18.47            | 6.59               | 58                        | 79            |  |  |  |  |  |
|              |                          |                  | MW-46              |                           |               |  |  |  |  |  |
| 15 FEB 1998  | 6.00                     | 3.72             |                    | 181                       | 193           |  |  |  |  |  |
| 20 MAY 1998  | 6.01                     | 8.46             | 1.2                | 213                       | 202           |  |  |  |  |  |
|              |                          |                  | MW-49              | · • •                     |               |  |  |  |  |  |
| 06 JAN 1998  | 6.39                     | 7.09             | 7.21               | 63                        | 230           |  |  |  |  |  |
| 22 JAN 1998  | 6.07                     | 6.79             | 6.41               | 72                        | 187           |  |  |  |  |  |
| 15 FEB 1998  | 6.44                     | 5.39             |                    | 51                        | 181           |  |  |  |  |  |
| 02 MAR 1998  | 8.01                     | 6.24             | 4.79               | 53                        | 126           |  |  |  |  |  |
| 18 MAR 1998  | 6.64                     | 4.46             | 6.98               | 39                        | 244           |  |  |  |  |  |
| 14 APR 1998  | 6.12                     | 5.90             | 2.99               | 76                        | 158           |  |  |  |  |  |
| 25 APR 1998  | 6.38                     | 5.74             | 3.61               | 72                        | 198           |  |  |  |  |  |
| 07 MAY 1998  | 5.79                     | 7.27             | 1.63               | 54                        | 222           |  |  |  |  |  |
| 20 MAY 1998  | 5.73                     | 8.27             | 1.01               | 64                        | 211           |  |  |  |  |  |
| 09 JUN 1998  | 5.68                     | 10.65            | 1.81               | 92                        | 120           |  |  |  |  |  |
| 16 JUN 1998  | 6.69                     | 12.72            | 3.77               | 71                        | 156           |  |  |  |  |  |
| 30 JUN 1998  | 6.11                     | 14.17            | 5.82               | 101                       | 164           |  |  |  |  |  |

|             |                              | Temperature | Dissolved             | Conductivity | <u> </u>   |  |  |  |
|-------------|------------------------------|-------------|-----------------------|--------------|------------|--|--|--|
| Date        | pН                           | (°C)        | Oxygen (mg/L)         | (μhmos)      | Redox (mV) |  |  |  |
|             |                              | <u> </u>    | MW-51                 |              |            |  |  |  |
| 06 JAN 1998 | 7.24                         | 7.06        | 6.88                  | 55           | 199        |  |  |  |
| 22 JAN 1998 | 6.38                         | 5.30        | 5.70                  | 68           | 176        |  |  |  |
| 05 FEB 1998 | 6.12                         | 4.93        | 3.76                  | 57           | 174        |  |  |  |
| 15 FEB 1998 |                              |             | Data not available    | (frozen)     |            |  |  |  |
| 02 MAR 1998 | 7.61                         | 2.38        | 8.73                  | 52           | 136        |  |  |  |
| 18 MAR 1998 | 6.73                         | 2.36        | 12.82                 | 32           | 245        |  |  |  |
| 14 APR 1998 | 6.53                         | 5.05        | 3.13                  | 38           | 151        |  |  |  |
| 25 APR 1998 | 5.48                         | 7.35        | 4.72                  | 34           | 187        |  |  |  |
| 07 MAY 1998 | 6.56                         | 9.56        | 11.1                  | 27           | 200        |  |  |  |
| 20 MAY 1998 | 6.09                         | 7.88        | 1.34                  | 53           | 198        |  |  |  |
| 09 JUN 1998 | 6.36                         | 12.61       | 9.63                  | 41           | 97         |  |  |  |
| 16 JUN 1998 | 7.12                         | 13.41       | 9.26                  | 40           | 134        |  |  |  |
| 30 JUN 1998 | 6.18                         | 14.91       | 7.00                  | 56           | 129        |  |  |  |
|             |                              |             | MW-54                 |              |            |  |  |  |
| 06 JAN 1998 | 4.95                         | 6.62        | 6.51                  | 83           | 209        |  |  |  |
| 22 JAN 1998 | 5.83                         | 7.55        | 2.47                  | 100          | 228        |  |  |  |
| 05 FEB 1998 | 7.20                         | 7.69        | 3.05                  | 163          | 182        |  |  |  |
| 15 FEB 1998 | 5.79                         | 4.33        | 10.30                 | 39           | 377        |  |  |  |
| 02 MAR 1998 | 6.47                         | 5.48        | 7.31                  | 57           | 144        |  |  |  |
| 18 MAR 1998 | 7.87                         | 3.87        | 10.04                 | 45           | 232        |  |  |  |
| 14 APR 1998 | 6.87                         | 6.29        | 2.88                  | 75           | 226        |  |  |  |
| 25 APR 1998 | 6.85                         | 8.12        | 7.78                  | 71           | 291        |  |  |  |
| 07 MAY 1998 | 7.08                         | 10.91       | 10.28                 | 68           | 216        |  |  |  |
| 20 MAY 1998 | 4.88                         | 8.80        | 3.14                  | 85           | 242        |  |  |  |
| 09 JUN 1998 | 6.54                         | 13.03       | 6.49                  | 120          | 257        |  |  |  |
| 16 JUN 1998 | 6.96                         | 15.84       | 5.33                  | 104          | 261        |  |  |  |
| 30 JUN 1998 | 7.54                         | 16.43       | 6.14                  | 87           | 168        |  |  |  |
|             |                              |             | MW-56R                |              |            |  |  |  |
| 06 JAN 1998 |                              |             | Data not available (b | olocked)     |            |  |  |  |
| 22 JAN 1998 |                              |             | Data not available (b | olocked)     |            |  |  |  |
| 05 FEB 1998 | Data not available (blocked) |             |                       |              |            |  |  |  |
| 15 FEB 1998 | Data not available (blocked) |             |                       |              |            |  |  |  |
| 02 MAR 1998 | ` <i>'</i>                   |             |                       |              |            |  |  |  |
| 18 MAR 1998 | Data not available (blocked) |             |                       |              |            |  |  |  |
| 20 MAY 1998 |                              |             | Data not available (b | •            |            |  |  |  |
| 09 JUN 1998 |                              |             | Data not available (s | parging)     |            |  |  |  |

|             |      | Temperature | Dissolved     | Conductivity |            |
|-------------|------|-------------|---------------|--------------|------------|
| Date        | pH_  | (°C)        | Oxygen (mg/L) | (μhmos)      | Redox (mV) |
|             |      |             | MW-58         |              | · .        |
| 06 JAN 1998 | 6.37 | 7.69        | 5.84          | 38           | 216        |
| 22 JAN 1998 | 6.14 | 6.87        | 5.26          | 49           | 181        |
| 05 FEB 1998 | 6.11 | 6.78        | 5.44          | 41           | 184        |
| 15 FEB 1998 | 6.24 | 6.25        |               | 42           | 189        |
| 02 MAR 1998 | 7.90 | 5.80        | 7.23          | 43           | 120        |
| 18 MAR 1998 | 6.70 | 5.54        | 8.90          | 44           | 239        |
| 14 APR 1998 | 6.18 | 6.42        | 5.29          | 45           | 146        |
| 25 APR 1998 | 5.98 | 6.97        | 4.78          | 87           | 123        |
| 07 MAY 1998 | 5.98 | 8.12        | 1.02          | 49           | 220        |
| 20 MAY 1998 | 5.84 | 7.96        | 0.74          | 51           | 198        |
| 09 JUN 1998 | 6.10 | 10.85       | 3.70          | 60           | 59         |
| 16 JUN 1998 | 6.63 | 11.40       | 5.28          | 52           | 159        |
| 30 JUN 1998 | 6.95 | 13.96       | 5.85          | 52           | 121        |
|             |      | -           | MW-61R        |              |            |
| 06 JAN 1998 | 6.01 | 5.25        | 4.74          | 79           | 134        |
| 22 JAN 1998 | 5.65 | 4.75        | 4.11          | 101          | 147        |
| 05 FEB 1998 | 5.67 | 4.41        | 4.71          | 88           | 130        |
| 15 FEB 1998 | 5.69 | 2.27        | 6.45          | 80           | 146        |
| 02 MAR 1998 | 8.56 | 1.60        | 10.76         | 78           | 121        |
| 18 MAR 1998 | 6.53 | 1.16        | 11.74         | 71           | 148        |
| 14 APR 1998 | 5.75 | 6.99        | 2.14          | 85           | 155        |
| 25 APR 1998 | 6.17 | 8.60        | 8.16          | 85           | 198        |
| 07 MAY 1998 | 5.17 | 11.86       | 10.59         | 93           | 242        |
| 20 MAY 1998 | 7.11 | 15.17       | 8.91          | 103          | 169        |
| 09 JUN 1998 | 5.83 | 14.34       | 2.53          | 117          | 157        |
| 16 JUN 1998 | 7.10 | 16.06       | 6.74          | 109          | 252        |
| 30 JUN 1998 | 6.38 | 17.71       | 4.59          | 117          | 145        |
|             |      |             | MW-62         |              |            |
| 06 JAN 1998 | 5.95 | 8.01        | 6.28          | 47           | 179        |
| 22 JAN 1998 | 5.93 | 7.15        | 7.26          | 56           | 200        |
| 05 FEB 1998 | 6.56 | 6.48        | 8.84          | 50           | 120        |
| 15 FEB 1998 | 5.82 | 6.24        | 5.91          | 57           | 149        |
| 02 MAR 1998 | 7.51 | 6.50        | 10.71         | 64           | 96         |
| 18 MAR 1998 | 6.36 | 6.52        | 6.35          | 62           | 152        |
| 14 APR 1998 | 5.90 | 6.57        | 6.40          | 61           | 154        |
| 25 APR 1998 | 6.31 | 8.75        | 5.98          | 49           | 175        |
| 07 MAY 1998 | 6.19 | 7.24        | 9.92          | 60           | 235        |
| 20 MAY 1998 | 7.58 | 8.76        | 1.80          | 80           | 164        |
| 09 JUN 1998 | 8.40 | 8.91        | 9.89          | 43           | 65         |
| 16 JUN 1998 | 7.06 | 8.57        | 3.20          | 65           | 189        |
| 30 JUN 1998 | 6.37 | 8.81        | 4.07          | 72           | 142        |

| Date        | рН   | Temperature (°C) | Dissolved<br>Oxygen (mg/L) | Conductivity (µhmos) | Redox (mV) |
|-------------|------|------------------|----------------------------|----------------------|------------|
|             |      |                  | MW-211                     |                      |            |
| 06 JAN 1998 | 5.94 | 6.56             | 9.74                       | 101                  | 210        |
| 22 JAN 1998 | 5.83 | 3.46             | 5.80                       | 158                  | 174        |
| 05 FEB 1998 | 5.84 | 5.09             | 9.46                       | 207                  | 163        |
| 15 FEB 1998 | 5.91 | 3.57             | 4.81                       | 209                  | 152        |
| 02 MAR 1998 | 5.73 | 4.35             | 5.45                       | 204                  | 172        |
| 18 MAR 1998 | 6.11 | 4.37             | 6.85                       | 238                  | 201        |
| 14 APR 1998 | 6.84 | 6.30             | 1.38                       | 170                  | 144        |
| 25 APR 1998 | 6.91 | 7.57             | 2.19                       | 140                  | 175        |
| 07 MAY 1998 | 6.22 | 10.42            | 11.34                      | 153                  | 231        |
| 20 MAY 1998 | 6.32 | 9.77             | 1.24                       | 63                   | 187        |
| 09 JUN 1998 | 6.04 | 11.07            | 1.44                       | 152                  | -15        |
| 16 JUN 1998 | 6.44 | 15.87            | 2.47                       | 109                  | 135        |
| 30 JUN 1998 | 9.40 | 17.26            | 4.14                       | 132                  | 66         |
|             |      |                  | MW-213                     |                      |            |
| 06 JAN 1998 | 6.55 | 7.32             | 9.05                       | 31                   | 205        |
| 22 JAN 1998 | 6.56 | 6.35             | 8.47                       | 39                   | 146        |
| 05 FEB 1998 | 6.14 | 6.26             | 7.47                       | 34                   | 146        |
| 15 FEB 1998 | 6.22 | 5.17             | 7.25                       | 38                   | 149        |
| 02 MAR 1998 | 8.83 | 5.13             | 8.54                       | 34                   | 97         |
| 18 MAR 1998 | 6.82 | 4.70             | 12.38                      | 41                   | 239        |
| 14 APR 1998 | 6.34 | 6.85             | 1.14                       | 39                   | 141        |
| 25 APR 1998 | 6.57 | 6.98             | 1.37                       | 58                   | 143        |
| 07 MAY 1998 | 6.58 | 11.70            | 10.71                      | 35                   | 207        |
| 20 MAY 1998 | 6.23 | 11.33            | 7.83                       | 33                   | 188        |
| 09 JUN 1998 | 6.44 | 14.10            | 9.06                       | 45                   | 33         |
| 16 JUN 1998 | 6.87 | 15.34            | 8.10                       | 40                   | 119        |
| 30 JUN 1998 | 6.53 | 16.73            | 7.72                       | 43                   | 105        |

Project: 296.0035 Revision: FINAL

Table 3-3 November 1998

TABLE 3-3 SUMMARY OF FIELD MEASUREMENTS OF TOTAL VOLATILE HYDROCARBONS AT WELL POINT RISERS FROM 22 JANUARY TO 16 JUNE 1998 AT THE OLD NAVY FUEL FARM, NAVAL AIR STATION, BRUNSWICK, MAINE

|          | 22 JAN                         | N 1998                         | 15 FEI                         | В 1998                         | 18 MA                       | R 1998                         | 25 AP                          | R 1998                         | 21 Ma                          | y 1998                      | 16 JUI                         | N 1998                         |
|----------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------------|--------------------------------|--------------------------------|
| Location | FID TVH<br>(ppm <sub>v</sub> ) | PID TVH<br>(ppm <sub>v</sub> ) | FID TVH<br>(ppm <sub>v</sub> ) | PID TVH<br>(ppm <sub>v</sub> ) | FID TVH (ppm <sub>v</sub> ) | PID TVH<br>(ppm <sub>v</sub> ) | FID TVH<br>(ppm <sub>v</sub> ) | PID TVH<br>(ppm <sub>v</sub> ) | FID TVH<br>(ppm <sub>v</sub> ) | PID TVH (ppm <sub>v</sub> ) | FID TVH<br>(ppm <sub>v</sub> ) | PID TVH<br>(ppm <sub>v</sub> ) |
| WP-1     | 38                             | 0.1                            | 0                              | 0                              | 8.64                        | 2.56                           | 0                              | 0                              | 0.25                           | 34                          | 87                             | 0                              |
| WP-2     | 2,360                          | 242                            | 650                            | 74                             | 576                         | 209                            | 222                            | 60                             | 347                            | 112                         | 5,420                          | 270                            |
| WP-3     | 54                             | 14.0                           | 30                             | 2                              | 3.98                        | 2.10                           | 10                             | 1                              | 9                              | 23                          | 36                             | (a)                            |
| WP-4     | 426                            | 102                            | 31                             | 1                              | 140                         | 82.87                          | (a)                            | (a)                            | 134                            | 32                          | 1%                             | 120                            |
| WP-5     | 2.75                           | 0.2                            | 0                              | 0                              | 9.61                        | 4.04                           | 30                             | 4                              | 17                             | 42                          | 226                            | 3                              |
| WP-6     | 38.6                           | 1.6                            | 0                              | 0                              | 10                          | 5.60                           | 4                              | 1                              | 6                              | 18                          | 35                             | 8                              |
| WP-7     | 22.7                           | 5.8                            | 102                            | 25                             | 55.54                       | 14.89                          | 2,438                          | 38                             | 400                            | 26                          | 4,230                          | 225                            |
| WP-8     | 11.4                           | 0.6                            | 0                              | 0                              | 868                         | 5.31                           | (a)                            | (a)                            | 2.5                            | 0.4                         | 7,860                          | 330                            |
| WP-9     | 0                              | 1.6                            | 0                              | 0                              | 0.81                        | 0                              | (a)                            | (a)                            | 0.5                            | 18                          | 2                              | (a)                            |
| WP-10    | 0                              | 0                              | 50                             | 1                              | 1.98                        | 0.87                           | 0                              | 0                              | 0.4                            | 2.5                         | 1                              | 6                              |
| WP-11    | 13.2                           | 2.4                            | 600                            | 55                             | 1.90                        | 0                              | (a)                            | (a)                            | 6                              | 1                           | 65                             | 4                              |
| WP-12    | 0                              | 0.2                            | 52                             | 5                              | 3.50                        | 1                              | (a)                            | (a)                            | 1                              | 2                           | 5                              | 0                              |
| WP-13    | 0                              | 1.1                            | Frozen                         | Frozen                         | 1.00                        | 0                              | (a)                            | (a)                            | 1                              | 0                           | (b)                            | (b)                            |
| WP-14    | 0                              | 0.1                            | 0                              | 0                              | 1.83                        | 0.89                           | (a)                            | (a)                            | 0.1                            | 18.2                        | 1                              | 7                              |
| WP-15    | 0                              | 0                              | 0                              | 0                              | 0.83                        | 0                              | (a)                            | (a)                            | 1                              | 0.5                         | 5                              | 3                              |
| WP-16R   | 0                              | 0                              | 0                              | 0                              | 0.92                        | 0                              | (a)                            | (a)                            | 6                              | 0.5                         | (a)                            | (a)                            |
| WP-17R   | 0                              | 0                              | 0                              | 0                              | 0.95                        | 0                              | (a)                            | (a)                            | 1                              | 0                           | (a)                            | (a)                            |
| WP-18R   | 0                              | 0                              | 0                              | 0                              | 0.71                        | 0                              | (a)                            | (a)                            | 0.5                            | 3                           | (a)                            | (a)                            |
| WP-20    | 0                              | 0                              | 0                              | 0                              | 1.22                        | 0                              | (a)                            | (a)                            | 1.5                            | 0.7                         | (b)                            | (b)                            |
| WP-21    | 0                              | 0                              | 0                              | 0                              | 2.07                        | 0.61                           | (a)                            | (a)                            | 1                              | 0                           | (a)                            | (a)                            |
| WP-22    | 0                              | 0                              | 0                              | 0                              | 5.26                        | 2.45                           | (a)                            | (a)                            | 4                              | 0                           | (a)                            | (a)                            |

<sup>(</sup>a) Data not collected due to rain.

NOTE: FID = Flame ionization detector.

PID = Photoionization detector. TVH = Total volatile hydrocarbons. 7 May 1998 data not collected due to rain.

<sup>(</sup>b) Well point damaged/destroyed.

Table 3-4
November 1998

# TABLE 3-4 SUMMARY OF WELL POINT RISER HEAD SPACE METHANE, OXYGEN, AND TOTAL VOLATILE HYDROCARBON CONCENTRATIONS OBTAINED ON 16 JUNE 1998 AT THE OLD NAVY FUEL FARM, NAVAL AIR STATION, BRUNSWICK, MAINE

|          | Well F              | oint Head Spa       | nce Vapor Meas      | surements          |
|----------|---------------------|---------------------|---------------------|--------------------|
|          | FID TVH             | PID TVH             |                     |                    |
| Location | (ppm <sub>v</sub> ) | (ppm <sub>v</sub> ) | CH <sub>4</sub> (%) | O <sub>2</sub> (%) |
| WP-01    | 87                  | 0.0                 | 0                   | 20.8               |
| WP-02    | 5,420               | 270                 | 2.7                 | 19.7               |
| WP-03    | 36                  | (a)                 | 0.0                 | 20.8               |
| WP-04    | 1%                  | 120                 | 0.0                 | 18.8               |
| WP-05    | 226                 | 3                   | 0.1                 | 20.5               |
| WP-06    | 35                  | 8                   | 0.0                 | 20.8               |
| WP-07    | 4,230               | 225                 | 0.3                 | 20.8               |
| WP-08    | 7,860               | 330                 | 0.0                 | 20.6               |
| WP-09    | 2                   | (a)                 | 0.0                 | 20.8               |
| WP-10    | 1                   | 6                   | 0.0                 | 20.8               |
| WP-11    | 65                  | 4                   | 0.0                 | 20.8               |
| WP-12    | 5                   | 0.0                 | 0.1                 | 12.7               |
| WP-13    | (b)                 | (b)                 | (b)                 | (b)                |
| WP-14    | 1                   | 7                   | 0.0                 | 20.8               |
| WP-15    | 5                   | 3                   | 0.0                 | 20.5               |
| WP-16R   | (a)                 | (a)                 | (a)                 | (a)                |
| WP-17R   | (a)                 | (a)                 | (a)                 | (a)                |
| WP-18R   | (a)                 | (a)                 | (a)                 | (a)                |
| WP-20    | (b)                 | (b)                 | (b)                 | (b)                |
| WP-21    | (a)                 | (a)                 | (a)                 | (a)                |
| WP-22    | (a)                 | (a)                 | (a)                 | (a)                |

- (a) Data not collected due to rain.
- (b) Well point damaged/destroyed.

NOTE: FID = Flame ionization detector.

PID = Photoionization detector

TVH = Total volatile hydrocarbons.

FID response expressed as ppm, except where noted. Atmospheric oxygen approximately 21.8 percent.

Methane detection limit was 0.1 percent.

Revision: FINAL Table 3-5 November 1998

TABLE 3-5 SUMMARY OF ANALYTICAL RESULTS FOR GROUND-WATER SAMPLES COLLECTED 16-18 JUNE 1998 AT THE OLD NAVY FUEL FARM, NAVAL AIR STATION, BRUNSWICK, MAINE

|               |          |            |                    |                | Sample Loc   | ation   |       |                                       |       |       | MEDEP                          |
|---------------|----------|------------|--------------------|----------------|--------------|---------|-------|---------------------------------------|-------|-------|--------------------------------|
| Compound      | WP-01    | WP-02      | WP-03              | WP-04          | WP-04-DUP    | WP-05   | WP-06 | WP-06-<br>DUP                         | WP-07 | WP-08 | Cleanup<br>Goal <sup>(a)</sup> |
| VOLATILE OF   | RGANIC C | OMPOUN     | DS BY EPA          | <b>А</b> МЕТНО | D 602 (μg/L) |         |       | · · · · · · · · · · · · · · · · · · · |       |       |                                |
| Benzene       | (<1U)    | (<1U)      | (<1U)              | (<1U)          | (<1U)        | 52      | (<1U) | (<1U)                                 | (<1U) | (<1U) | 5                              |
| Toluene       | 1        | (<1U)      | 2                  | 3              | 3            | 710D    | 1     | (<1U)                                 | (<1U) | (<1U) |                                |
| Ethylbenzene  | (<1U)    | 2          | (<1U)              | (<1U)          | (<1U)        | 890D    | (<1U) | (<1U)                                 | 14    | (<1U) |                                |
| Total xylenes | 5        | 14         | 3                  | 1              | 3            | 6,700D  | 2     | (<1U)                                 | 37    | 1     |                                |
| Total BTEX    | 6        | 16         | 5                  | 4              | 6            | 8,352D  | 3     | ND                                    | 51    | 1     |                                |
| MTBE          | (<1U)    | (<1U)      | (<1U)              | (<1U)          | (<1U)        | (<1U)   | (<1U) | (<1U)                                 | (<1U) | (<1U) | 35 <sup>(b)</sup>              |
| TPH BY DHS-I  | HETL ME  | ГНОD 4.2.1 | 7 (μ <b>g/L</b> )  |                |              |         |       |                                       |       |       |                                |
| TPH-GRO       | 45       | 2,400E     | 40                 | 180            | 32           | 15,000E | 150   | (<10U)                                | 1,800 | 70    | 50                             |
| TPH BY DHS-I  | HETL ME  | ГНОД 4.1.2 | 25 (μ <b>g/L</b> ) |                |              |         |       |                                       |       |       |                                |
| TPH-DRO       | 320      | 4,700D     | 150                | 2,000          | 3,000D       | 1,600   | 360   | 280                                   | 660   | 66    | 50                             |

- (a) Stringent cleanup goals taken from Procedural Guidelines for Establishing Standards for the Remediation of Oil Contaminated Soil and Ground Water in Maine, Maine Department of Environmental Protection 1995. Dashes indicate no goal established for this compound.
- (b) Maine State Legislature, Office of Policy and Legal Analysis. Memo dated 3 June 1998 addressed to members of the Natural Resources Committee and Health and Human Services Committee.

NOTE: Well points WP-13, WP-19, and WP-20 were destroyed; thus, no samples were collected.

= Benzene, toluene, ethylbenzene, and total xylenes. BTEX

DHS-HETL = State of Maine Department of Human Services-Health and Environmental Testing Laboratory.

**MTBE** = Methyl tertiary-butyl ether.

TPH-GRO = Total petroleum hydrocarbons-gasoline range organics. = Total petroleum hydrocarbons-diesel range organics. TPH-DRO

= No detected BTEX compounds. ND

= Indicates compound identified at secondary dilution factor. D

= Not detected. Sample quantitation limits are shown as (<\_\_\_U).

No volatile organic compounds were reported in the trip blanks.

Project: 296.0035 Revision: DRAFT Table 3-5 (Continued) November 1998

EA Engineering, Science, and Technology

|               |        |         |                       |            |          | Sam               | ple Location |          |        |        | ···     |                  |                                         |
|---------------|--------|---------|-----------------------|------------|----------|-------------------|--------------|----------|--------|--------|---------|------------------|-----------------------------------------|
| Compound      | WP-09  | WP-10   | WP-11                 | WP-12      | WP-14    | WP-15             | WP-16R       | WP-17R   | WP-18R | WP-21  | WP-22   | Rinsate<br>Blank | MEDEP<br>Cleanup<br>Goal <sup>(a)</sup> |
| VOLATILE O    | RGANIC | COMPO   | UNDS BY               | EPA ME     | THOD 602 | 2 (μ <b>g/L</b> ) |              |          |        |        |         |                  |                                         |
| Benzene       | (<1U)  | (<1U)   | (<1U)                 | (<1U)      | (<1U)    | (<1Ú)             | (<1U)        | 42       | (<1U)  | 41     | 150     | (<1U)            | 5                                       |
| Toluene       | 1      | (<1U)   | (<1U)                 | 2          | (<1U)    | ` ź               | Ź            | 100      | 2      | 30     | 570D    | (<1U)            |                                         |
| Ethylbenzene  | (<1U)  | (<1U)   | (<1U)                 | (<1U)      | (<1U)    | (<1U)             | (<1U)        | 7        | (<1U)  | 96     | 110     | (<1U)            |                                         |
| Total xylenes | 1      | (<1U)   | 1                     | 2          | (<1U)    | 3                 | 2            | 40       | í      | 380    | 450     | (<1U)            |                                         |
| Total BTEX    | 2      | ND      | 1                     | 4          | ND       | 5                 | 4            | 189      | 3      | 547    | 1,280D  | ND               |                                         |
| MTBE          | (<1U)  | (<1U)   | (<1U)                 | (<1U)      | (<1U)    | (<1U)             | (<1U)        | (<1U)    | (<1U)  | (<1U)  | (<1U)   | (<1U)            | 35                                      |
| TPH BY DHS-   | HETL M | ETHOD 4 | $1.2.17~(\mu { m g})$ | <b>L</b> ) | , ,      | ` ′               | ` ,          | ( 12 - ) | (120)  | (110)  | (410)   | (410)            | 33                                      |
| TPH-GRO       | 49     | 78      | 180                   | (<10U)     | (<10U)   | 43                | 85           | 1,900E   | 24     | 3,800E | 3,900E  | (<10U)           | 50                                      |
| TPH BY DHS-   | HETL M | ETHOD 4 | $1.1.25~(\mu g)$      | <b>(L)</b> | •        |                   |              | ,        |        | 2,0001 | 2,20013 | (1200)           | 50                                      |
| TPH-DRO       | 150    | 310     | 420                   | 550        | 280      | 340               | 630          | 2,500D   | 100    | 1,200  | 10,000D | 290              | 50                                      |

|               |          |                   |             |        |           | Sample Loc | ation  |        |        |        | -                |                                         |
|---------------|----------|-------------------|-------------|--------|-----------|------------|--------|--------|--------|--------|------------------|-----------------------------------------|
| Compound      | MW-44    | MW-44<br>DUP      | MW-49       | MW-51  | MW-54     | MW-58      | MW-61R | MW-62  | MW-211 | MW-213 | Rinsate<br>Blank | MEDEP<br>Cleanup<br>Goal <sup>(a)</sup> |
| VOLATILE ORG  | SANIC CO | MPOUND            | S BY EPA    | METHOD | 602 (μg/L | )          |        |        |        |        |                  |                                         |
| Benzene       | (<1U)    | (<1U)             | (<1U)       | (<1U)  | (<1Ŭ)     | (<1U)      | (<1U)  | (<1U)  | (<1U)  | (<1U)  | (<1U)            | 5                                       |
| Toluene       | (<1U)    | (<1U)             | (<1U)       | 1      | (<1U)     | (<1U)      | (<1U)  | (<1U)  | 2,500D | (<1U)  | (<1U)            |                                         |
| Ethylbenzene  | (<1U)    | (<1U)             | (<1U)       | (<1U)  | (<1U)     | 1          | (<1U)  | (<1U)  | 58     | (<1U)  | (<1U)            |                                         |
| Total xylenes | (<1U)    | (<1U)             | (<1U)       | 1      | 2         | 1          | (<1U)  | (<1U)  | 190    | (<1U)  | (<1U)            |                                         |
| Total BTEX    | ND       | ND                | ND          | 2      | 2         | 2          | ND     | ND     | 2,748  | NĎ     | ND               |                                         |
| MTBE          | (<1U)    | (<1U)             | (<1U)       | (<1U)  | (<1U)     | 4          | 5      | (<1U)  | (<1U)  | (<1U)  | (<1U)            | 35                                      |
| TPH BY DHS-HI | ETL METH | <b>HOD 4.2.17</b> | $(\mu g/L)$ |        |           |            |        | , ,    | ` ,    | ` ,    | ,                |                                         |
| TPH-GRO       | 38       | 28                | (<10U)      | 21     | 32        | (<10U)     | (<10U) | (<10U) | 4,400  | (<10U) | 22               | 50                                      |
| TPH BY DHS-HI | ETL METH | HOD 4.1.25        | $(\mu g/L)$ |        |           | • •        | •      | , ,    | ,      | , ,    |                  |                                         |
| TPH-DRO       | 110      | 130               | 130         | 64     | 160       | (<50U)     | 86     | 76     | 900    | 61     | (<50U)           | 50                                      |

NOTE: Laboratory reports that samples WP-02 (WP001), WP-22 (WP003), WP-05 (WP006), WP-17R (WP015), and WP-21 (WP019) had TPH-GRO results above the upper calibration limit of 1,000 µg/L; are shown as "E."

The original calibration width affected the low concentration results. The curve was reproduced with the highest standard eliminated. High standard values are those estimated as "E."

November 1998

TABLE 3-6 SUMMARY OF ANALYTICAL RESULTS FOR FERROUS IRON AND MANGANESE CONCENTRATIONS IN GROUND-WATER SAMPLES COLLECTED 16-18 JUNE 1998 AT THE OLD NAVY FUEL FARM, NAVAL AIR STATION, BRUNSWICK, MAINE

| Location | Ferrous Iron<br>(mg/L) | Manganese<br>(mg/L) |
|----------|------------------------|---------------------|
| WP-1     | 1.07                   | 0.3                 |
| WP-2     | 1.37                   | 0.1                 |
| WP-3     | 2.83                   | 0.1                 |
| WP-4     | 0.76                   | 0.1                 |
| WP-4 DUP | 1.16                   | 0.1                 |
| WP-5     | 0.76                   | 0.1                 |
| WP-6     | 0.63                   | 0.2                 |
| WP-7     | 2.33                   | 0.2                 |
| WP-8     | 1.60                   | 0.2                 |
| WP-9     | 0.09                   | 0.0                 |
| WP-10    | 1.07                   | 0.3                 |
| WP-11    | 0.71                   | 0.1                 |
| WP-12    | 0.50                   | 0.0                 |
| WP-14    | 0.57                   | 0.1                 |
| WP-15    | 0.39                   | 0.1                 |
| WP-16R   | 0.07                   | 0.1                 |
| WP-17R   | 2.91                   | 0.2                 |
| WP-18R   | 0.09                   | 0.1                 |
| WP-21    | 3.24                   | 0.2                 |
| WP-22    | 0.09                   | 0.2                 |

Table 3-7 November 1998

TABLE 3-7 SUMMARY OF ANALYTICAL RESULTS FOR GROUND-WATER SAMPLES COLLECTED FROM 7-8 AUGUST 1996 TO 18 JUNE 1998 AT THE OLD NAVY FUEL FARM, NAVAL AIR STATION, BRUNSWICK, MAINE

|                |         |                    |                    | Paran                | neters        |       |                        | -                      |
|----------------|---------|--------------------|--------------------|----------------------|---------------|-------|------------------------|------------------------|
| Date           | Benzene | Toluene            | Ethylbenzene       | Total<br>Xylenes     | Total<br>BTEX | МТВЕ  | TPH-GRO                | TPH-DRO                |
|                |         |                    | W                  | P-01                 |               |       |                        |                        |
| 7-8 AUG 1996   | (<1U)   | 2.1                | (<1U)              | 12.0                 | 14.1          | 16    | 77                     | 1,000                  |
| 4-5 DEC 1996   | (<1U)   | (<1U)              | (<1U)              | 2.2                  | 2.2           | (<1U) | 3,300                  | 750                    |
| 24-25 JUN 1997 | (<1U)   | (<1U)              | (<1U)              | (<1U)                | ND            | (<1U) | 260                    | 1,800                  |
| 10-11 DEC 1997 | (<1U)   | (<1U)              | (<1U)              | 1                    | 1             | (<1U) | 140                    | 640                    |
| 16-18 JUN 1998 | (<1U)   | 1                  | (<1U)              | 5                    | 6             | (<1U) | 45                     | 320                    |
|                |         |                    | W                  | P-02                 |               |       |                        |                        |
| 7-8 AUG 1996   | 5.6     | 34                 | 94                 | 940                  | 623.6         | 34    | 4,200                  | 16,000                 |
| 24-25 JUN 1997 | 3       | 13                 | 81                 | 450                  | 547           | (<1U) | 4,200                  | 23,000D <sup>(a)</sup> |
| 10-11 DEC 1997 | (<1U)   | (<1U)              | 2                  | 12                   | 14            | (<1U) | 18,000D                | 5,900D                 |
| 16-18 JUN 1998 | _(<1U)  | (<1U)              | 2                  | 14                   | 16            | (<1U) | 2,400E <sup>(b)</sup>  | 4,700D                 |
|                |         |                    | <b>W</b> ]         | P-03                 |               |       |                        |                        |
| 7-8 AUG 1996   | 17      | 72                 | 1.3                | 3.1                  | 93.4          | 1.3   | 140                    | 410                    |
| 4-5 DEC 1996   | (<1U)   | 2.6                | (<1U)              | 5.1                  | 7.7           | (<1U) | 4,100                  | 670                    |
| 24-25 JUN 1997 | (<1U)   | (<1U)              | (<1U)              | (<1U)                | ND            | 1     | 130                    | 440                    |
| 10-11 DEC 1997 | (<1U)   | (<1U)              | (<1U)              | (<1U)                | ND            | (<1U) | 200                    | 170                    |
| 16-18 JUN 1998 | (<1U)   | 2                  | (<1U)              | 3                    | 5             | (<1U) | 40                     | 150                    |
|                |         |                    | W                  | P-04                 |               |       |                        |                        |
| 7-8 AUG 1996   | 1.6     | 3.8                | 7.5                | 15.5                 | 28.4          | 31    | 890                    | 1,300                  |
| 24-25 JUN 1997 | 3       | 10                 | 94                 | 530                  | 637           | 1     | 16,000                 | 12,000,000             |
| 10-11 DEC 1997 | (<1U)   | (<1U)              | (<1U)              | (<1U)                | ND            | (<1U) | 6,800D                 | 49,000D                |
| 16-18 JUN 1998 | (<1U)   | 3                  | (<1U)              | 1                    | 4             | (<1U) | 180                    | 2,000                  |
|                |         |                    |                    | P-05                 |               |       |                        |                        |
| 7-8 AUG 1996   | 12      | 740 <sup>(c)</sup> | 700 <sup>(c)</sup> | 4,300 <sup>(c)</sup> | 5,752         | 14    | 9,000                  | 1,000                  |
| 4-5 DEC 1996   | 17      | 240                | 350                | 2,420                | 3,027         | 8.7   | 4,800                  | (<50U)                 |
| 24-25 JUN 1997 | 55      | 1,700D             | 1,100 <b>D</b>     | 8,500D               | 11,355        | (<1U) | 15,000                 | 2,700D                 |
| 10-11 DEC 1997 | 1       | 10                 | 6                  | 178                  | 195           | 4     | 890D                   | 760                    |
| 16-18 JUN 1998 | 52      | 710D               | 890D               | 6,700D               | 8,352D        | (<1U) | 15,000E <sup>(b)</sup> | 1,600                  |

<sup>(</sup>a) Chromatographic patterns indicated the presence of a heavy petroleum product, much of which eluted beyond the DRO retention time range.

NOTE: BTEX = Benzene, toluene, ethylbenzene, and total xylenes.

MTBE = Methyl tertiary-butyl ether.

 Not detected. ND

= Indicates compound identified at secondary dilution factor.

TPH = Total petroleum hydrocarbons; GRO = Gasoline range organics; DRO = Diesel range organics.

(<\_U) = Compound not detected above method detection limit shown.

Results reported in µg/L.

Results of TPH-GRO analysis above upper instrument calibration limit. Laboratory flagged as "E." The original calibration curve width affected low concentration results. Upon reanalysis, the high standard results were estimated.

<sup>(</sup>c) Reanalysis due to low surrogate recovery.

|                 |                 |                                       |              | Paran            | neters                                  |       |         |            |
|-----------------|-----------------|---------------------------------------|--------------|------------------|-----------------------------------------|-------|---------|------------|
| Date            | Benzene         | Toluene                               | Ethylbenzene | Total<br>Xylenes | Total<br>BTEX                           | МТВЕ  | TPH-GRO | TPH-DRO    |
| Date            | Benzene         | Toruciic                              |              | P-06             | DIEA                                    | MIDE  | THI ORO | I IIII DRO |
| 7-8 AUG 1996    | (<1U)           | 3.8                                   | (<1U)        | 3.7              | 7.5                                     | 32    | 31      | 150        |
| 4-5 DEC 1996    | (<1U)           | 2.9                                   | (<1U)        | 1.4              | 4.3                                     | (<1U) | 20      | (<50U)     |
| 24-25 JUN 1997  | (<1U)           | (<1U)                                 | (<1U)        | (<1U)            | ND                                      | (<1U) | 210     | 450        |
| 10-11 DEC 1997  | (<1U)           | (<1U)                                 | (<1U)        | 1                | 1                                       | (<1U) | 200     | 220        |
| 16-18 JUN 1998  | (<1U)           | 1                                     | (<1U)        | 2                | 3                                       | (<1U) | 150     | 360        |
|                 |                 |                                       |              | P-07             |                                         |       |         |            |
| 7-8 AUG 1996    | (<1U)           | 12.0                                  | 6.0          | 49.2             | 67.2                                    | 9.9   | 2,500   | 680        |
| 24-25 JUN 1997  | (<1U)           | (<1U)                                 | (<1U)        | (<1U)            | ND                                      | (<1U) | 4,000   | 1,200      |
| 10-11 DEC 1997  | (<1U)           | (<1U)                                 | (<1U)        | (<1U)            | ND                                      | (<1U) | 11,000D | 1,300      |
| 16-18 JUN 1998  | (<1U)           | (<1U)                                 | 14           | 37               | 51                                      | (<1U) | 1,800   | 660        |
|                 |                 |                                       | W            | P-08             |                                         |       |         |            |
| 7-8 AUG 1996    | 15              | 6.4                                   | 1.5          | 6.1              | 29.0                                    | 29    | 220     | 480        |
| 4-5 DEC 1996    | (<1U)           | (<1U)                                 | (<1U)        | 1.3              | 1.3                                     | (<1U) | 270     | 150        |
| 24-25 JUN 1997  | (<1U)           | (<1U)                                 | (<1U)        | (<1U)            | ND                                      | (<1U) | 1,600   | 2,400D     |
| 10-11 DEC 1997  | (<1U)           | (<1U)                                 | (<1U)        | (<1U)            | ND                                      | (<1U) | 560     | 730        |
| 16-18 JUN 1998  | (<1U)           | (<1U)                                 | (<1U)        | 1                | 1                                       | (<1U) | 70      | 66         |
|                 |                 | · · · · · · · · · · · · · · · · · · · | W            | P-09             |                                         |       |         |            |
| 7-8 AUG 1996    | 1.0             | 5.4                                   | 1.3          | 8.7              | 16.4                                    | 130   | 93      | 89         |
| 4-5 DEC 1996    | (<1U)           | (<1U)                                 | (<1U)        | 1.0              | 1.0                                     | (<1U) | 730     | (<50U)     |
| 24-25 JUN 1997  | (<1U)           | (<1U)                                 | (<1U)        | (<1U)            | ND                                      | (<1U) | 110     | NA         |
| 16-18 JUN 1998  | (<1U)           | 1                                     | (<1U)        | 1                | 2                                       | (<1U) | 49      | 150        |
|                 |                 |                                       |              | P-10             |                                         |       |         |            |
| 7-8 AUG 1996    | 31              | 46                                    | 17           | 72               | 166                                     | 49    | 550     | 420        |
| 4-5 DEC 1996    | (<1U)           | 4.0                                   | 2.0          | 13.6             | 19.6                                    | (<1U) | 130     | (<50U)     |
| 24-25 JUN 1997  | 34              | 26                                    | 9            | 41               | 110                                     | (<1U) | 310     | 470        |
| 10-11 DEC 1997  | (<1U)           | (<1U)                                 | (<1U)        | (<1U)            | ND                                      | (<1U) | 25      | 240        |
| 16-18 JUN 1998  | (<1U)           | (<1U)                                 | (<1U)        | (<1U)            | ND                                      | (<1U) | 78      | 310        |
|                 |                 | 2 00 0(h)                             |              | P-11             | • • • • • • • • • • • • • • • • • • • • |       |         |            |
| 7-8 AUG 1996    | 78              | 3,000 <sup>(b)</sup>                  | 170          | 750              | 3,998                                   | 51    | 5,500   | 3,600      |
| 4-5 DEC 1996    | 9.9             | 220                                   | 1.7          | 38               | 269.6                                   | (<1U) | 3,400   | 220        |
| 24-25 JUN 1997  | 320             | 6,700D                                | 72           | 335              | 7,427                                   | 2     | 9,100   | 12,000D    |
| 10-11 DEC 1997  | (<1U)           | 5                                     | (<1U)        | 2                | 7                                       | (<1U) | 490     | 1,200      |
| 16-18 JUN 1998  | (<1U)           | (<1U)                                 | (<1U)        | 1                | 1                                       | (<1U) | 180     | 420        |
| 4.5 DEC 1006    | (<1U)           | 190                                   | 9.1          | P-12<br>392      | 591.1                                   | (<1U) | 870     | 390        |
| 4-5 DEC 1996    |                 | 190                                   |              |                  |                                         |       |         |            |
| 16-18 JUN 1998  | (<1U)           |                                       | (<1U)        | 2                | 4                                       | (<1U) | (<10U)  | 550        |
| NOTE: $NA = Nc$ | it analyzed; ir | isufficient wa                        | пег.         |                  |                                         |       |         |            |

|                 |         |                                        |              | Param                                 | neters        |               |                       |          |
|-----------------|---------|----------------------------------------|--------------|---------------------------------------|---------------|---------------|-----------------------|----------|
| Date            | Benzene | Toluene                                | Ethylbenzene | Total<br>Xylenes                      | Total<br>BTEX | MTBE          | TPH-GRO               | TPH-DRO  |
|                 |         |                                        |              | P-13                                  | 2121          | MIDE          | TIM ONO               | I II DRO |
| 7-8 AUG 1996    | 15      | 380                                    | 56           | 315                                   | 766           | 89            | 2,200                 | 580      |
| 4-5 DEC 1996    | (<1U)   | (<1U)                                  | (<1U)        | 57                                    | 57            | (<1U)         | 950                   | 3,100    |
| 24-25 JUN 1997  | 12      | 270                                    | 3            | 15                                    | 300           | (<1U)         | 430                   | 290      |
| 10-11 DEC 1997  | (<1U)   | (<1U)                                  | (<1U)        | (<1U)                                 | ND            | (<1U)         | 470                   | NA       |
| 16-18 JUN 1998  |         |                                        | Data         | not availabl                          | e (well bloc  | ked)          |                       |          |
|                 |         |                                        | W            | P-14                                  | · ••          |               |                       |          |
| 7-8 AUG 1996    | (<1U)   | 10                                     | (<1U)        | 4.5                                   | 14.5          | 1.6           | 34                    | 140      |
| 4-5 DEC 1996    | (<1U)   | (<1U)                                  | (<1U)        | (<1U)                                 | ND            | (<1U)         | 15                    | 62       |
| 24-25 JUN 1997  | (<1U)   | 1                                      | (<1U)        | (<1U)                                 | 1             | (<1U)         | (<25U)                | 280      |
| 10-11 DEC 1997  | (<1U)   | (<1U)                                  | (<1U)        | (<1U)                                 | ND            | (<1U)         | 38                    | 280      |
| 16-18 JUN 1998  | (<1U)   | (<1U)                                  | (<1U)        | (<1U)                                 | ND            | (<1U)         | (<10U)                | 280      |
|                 |         |                                        | W            | P-15                                  |               |               |                       |          |
| 7-8 AUG 1996    | 5.5     | 19                                     | 1.7          | 7.6                                   | 33.8          | 2.0           | 47                    | 500      |
| 4-5 DEC 1996    | (<1U)   | (<1U)                                  | (<1U)        | (<1U)                                 | ND            | (<1U)         | (<10U)                | 66       |
| 24-25 JUN 1997  | (<1U)   | 1                                      | (<1U)        | (<1U)                                 | 1             | (<1U)         | 160                   | 570      |
| 10-11 DEC 1997  | (<1U)   | (<1U)                                  | (<1U)        | (<1U)                                 | ND            | (<1U)         | 160                   | 570      |
| 16-18 JUN 1998  | (<1U)   | 2                                      | (<1U)        | 3                                     | 5             | (<1U)         | 43                    | 340      |
|                 |         |                                        |              | P-16                                  |               |               |                       |          |
| 4-5 DEC 1996    | (<1U)   | 1.2                                    | (<1U)        | 1.3                                   | 2.5           | (<1U)         | 11                    | (<50U)   |
|                 |         |                                        |              | -16R                                  |               | <del></del> - |                       |          |
| 16-18 JUN 1998  | (<1U)   | 2                                      | (<1U)        | 2                                     | 4             | (<1U)         | 85                    | 630      |
|                 |         |                                        |              | -17R                                  |               | <del></del>   |                       |          |
| 16-18 JUN 1998  | 42      | 100                                    | 7            | 40                                    | 189           | (<1U)         | 1,900E <sup>(b)</sup> | 2,500D   |
| 7-8 AUG 1996    | ( «1II) | 7.0                                    |              | P-18                                  | 11.6          | ( -1II)       |                       |          |
| l -             | (<1U)   | 7.8<br>1.6                             | (<1U)        | 3.8                                   | 11.6          | (<1U)         | 22                    | 75       |
| 4-5 DEC 1996    | (<1U)   | 1.0                                    | (<1U)        | 1.5<br>-18R                           | 3.1           | (<1U)         | 35                    | (<50U)   |
| 10-11 DEC 1997  | (<1U)   | (<1U)                                  |              | -18K<br>(<1U)                         | ND            | (<1U)         | (<10U)                | 330      |
| 16-18 JUN 1998  | (<1U)   | 2                                      | (<1U)        | 1                                     | 3             | (<1U)         | 24                    | 100      |
| 10 10 3011 1550 | (410)   |                                        |              | · · · · · · · · · · · · · · · · · · · |               | (<10)         | 4-T                   | 100      |
| 7-8 AUG 1996    | (<1U)   | 3.4                                    | (<1U)        | 1.2                                   | 4.6           | 3.9           | 260                   | 100      |
| 4-5 DEC 1996    | (<1U)   | 1.2                                    | (<1U)        | 2.6                                   | 3.8           | (<1U)         | 1,100                 | 210      |
| 24-25 JUN 1997  | (<1U)   | 4                                      | (<1U)        | (<1U)                                 | 4             | (<1U)         | 1,000                 | 400      |
| 16-18 JUN 1998  | . ,     |                                        |              | Well point                            |               | , -/          | -,                    |          |
|                 |         | ······································ |              | P-20                                  | <u> </u>      | -             |                       |          |
| 7-8 AUG 1996    | 1.0     | 7.2                                    | 1.0          | 6.3                                   | 15.5          | 3.6           | 310                   | 73       |
| 4-5 DEC 1996    | (<1U)   | 1.2                                    | (<1U)        | 3.6                                   | 4.8           | (<1U)         | 14                    | (<50U)   |
| 24-25 JUN 1997  | (<1U)   | 2                                      | (<1U)        | (<1U)                                 | 2             | (<1U)         | (<25U)                | 370      |
| 10-11 DEC 1997  | (<1U)   | 2                                      | (<1U)        | (<1U)                                 | 2             | (<1U)         | (<10U)                | 200      |
| 16-18 JUN 1998  |         |                                        |              | not available                         | e (well bloc  |               | . ,                   |          |

|                   |               |              |              | Paran            | neters        |               |                       |                       |
|-------------------|---------------|--------------|--------------|------------------|---------------|---------------|-----------------------|-----------------------|
| Doto              | Benzene       | Toluene      | Ethylbenzene | Total<br>Xylenes | Total<br>BTEX | MTBE          | TPH-GRO               | TDU DDO               |
| Date              | Belizelle     | Toluche      | <u> </u>     | P-21             | DIEA          | MITBL         | IFH-GRO               | TPH-DRO               |
| 10-11 DEC 1997    | 68            | 90           | 120          | F-21<br>540      | 818           | 16            | 8,500D                | 3,700D                |
| 16-18 JUN 1998    | 41            | 30           | 96           | 380              | 547           | (<1U)         | 3,800E <sup>(b)</sup> | 1,200                 |
| 10-16 JUN 1998    | <del></del>   | 30           |              | P-22             | 347           | (<10)         | J,600E                | 1,200                 |
| 10-11 DEC 1997    | 52            | 180          | 12           | 138              | 382           | (<1U)         | 3,400D                | 5,200D                |
| 16-18 JUN 1998    | 150           | 570D         | 110          | 450              | 1.280D        | (<1U)         | 3,900E <sup>(b)</sup> | 10.000D               |
| 10-18 3014 1556   |               | 3,00         |              | W-44             | 1,2000        |               | 3.7001                | 10.0000               |
| 10 JUN 1996       | (<1U)         | (<1U)        | (<1U)        | (<1U)            | ND            | (<1U)         | (<50U)                | (<100U)               |
| 7-8 AUG 1996      | (<1U)         | 2.5          | (<1U)        | 1.1              | 3.6           | (<1U)         | 16                    | (<50U)                |
| 4-5 DEC 1996      | (<1U)         | (<1U)        | (<1U)        | (<1U)            | ND            | (<1U)         | 110                   | 290                   |
| 24-25 JUN 1997    | (<1U)         | (<1U)        | (<1U)        | (<1U)            | ND            | (<1U)         | (<25U)                | 56                    |
| 10-11 DEC 1997    | (<1U)         | (<1U)        | (<1U)        | (<1U)            | ND            | (<1U)         | (<10U)                | 84                    |
| 16-18 JUN 1998    | (<1U)         | (<1U)        | (<1U)        | (<1U)            | ND            | (<1U)         | 38                    | 110                   |
|                   |               | <u> </u>     |              | V-49             |               | <u></u>       |                       |                       |
| 10 JUN 1996       | (<1U)         | (<1U)        | (<1U)        | (<1U)            | ND            | (<1U)         | (<50U)                | (<50U)                |
| 4-5 DEC 1996      | (<1U)         | (<1U)        | (<1U)        | (<1U)            | ND            | (<1U)         | (<10U)                | 110 <sup>(d)</sup>    |
| 24-25 JUN 1997    | (<1U)         | 2            | (<1U)        | (<1U)            | 2             | (<1U)         | (<25U)                | 140                   |
| 10-11 DEC 1997    | (<1U)         | 2            | (<1U)        | (<1U)            | 2             | (<1U)         | (<10U)                | 190                   |
| 16-18 JUN 1998    | (<1U)         | (<1U)        | (<1U)        | (<1U)            | ND            | (<1U)         | (<10U)                | 130                   |
|                   |               |              | MV           | V-51             |               |               |                       |                       |
| 10 JUN 1996       | (<1U)         | (<1U)        | (<1U)        | (<1U)            | ND            | 2.1           | (<50U)                | (<100U)               |
| 7-8 AUG 1996      | (<1U)         | 1.2          | (<1U)        | (<1U)            | 1.2           | 4.8           | 14                    | (<50U)                |
| 4-5 DEC 1996      | (<1U)         | (<1U)        | (<1U)        | (<1U)            | ND            | (<1U)         | (<10U)                | (<50U) <sup>(d)</sup> |
| 24-25 JUN 1997    | (<1U)         | (<1U)        | (<1U)        | (<1U)            | ND            | (<1U)         | (<25U)                | 52                    |
| 10-11 DEC 1997    | (<1U)         | (<1U)        | (<1U)        | (<1U)            | ND            | (<1U)         | (<10U)                | 93                    |
| 16-18 JUN 1998    | (<1U)         | 1            | (<1U)        | 1                | 2             | (<1U)         | 21                    | 64                    |
|                   |               |              | MV           | V-54             |               |               |                       |                       |
| 10 JUN 1996       | (<1U)         | (<1U)        | (<1U)        | (<1U)            | ND            | (<1U)         | (<50U)                | (<100U)               |
| 4-5 DEC 1996      | (<1U)         | (<1U)        | 1.2          | (<1U)            | 1.2           | (<1U)         | 15                    | 260 <sup>(d)</sup>    |
| 24-25 JUN 1997    | (<1U)         | (<1U)        | (<1U)        | (<1U)            | ND            | (<1U)         | (<25U)                | 230                   |
| 10-11 DEC 1997    | 1             | (<1U)        | (<1U)        | (<1U)            | 1             | (<1U)         | 150                   | 310                   |
| 16-18 JUN 1998    | (<1U)         | (<1U)        | (<1U)        | 2                | 2             | (<1U)         | 32                    | 160                   |
|                   |               |              |              | V-56             |               |               |                       |                       |
| 10 JUN 1996       | (<1U)         | 1.8          | (<1U)        | 1.0              | 2.8           | (<1U)         | 44                    | 56                    |
| 16-18 JUN 1998    |               |              |              | Well not         |               |               | <del>-</del>          |                       |
| (d) Chromatograph |               |              |              | an one petro     | oleum produ   | ict. This san | ple had respon        | ses which             |
| eluted before an  | u after the D | KO retention | ume range.   |                  |               |               |                       |                       |

|                |                      |                       |                                       | Paran   | eters  |       |         |                      |  |
|----------------|----------------------|-----------------------|---------------------------------------|---------|--------|-------|---------|----------------------|--|
| <b>.</b>       | D                    | Т-1                   | Eshall and                            | Total   | Total  | MTDE  | TOU CDO | TDU DDO              |  |
| Date           | Benzene              | Toluene               | Ethylbenzene                          | Xylenes | BTEX   | MTBE  | TPH-GRO | TPH-DRO              |  |
|                |                      |                       | · · · · · · · · · · · · · · · · · · · | W-58    |        |       |         |                      |  |
| 10 JUN 1996    | (<1U)                | (<1U)                 | (<1U)                                 | (<1U)   | ND     | (<1U) | (<50U)  | (<100U)              |  |
| 4-5 DEC 1996   | (<1U)                | (<1U)                 | (<1U)                                 | (<1U)   | ND     | (<1U) | (<10U)  | 230 <sup>(d)</sup>   |  |
| 24-25 JUN 1997 | (<1U)                | (<1U)                 | (<1U)                                 | (<1U)   | ND     | (<1U) | (<25U)  | 100                  |  |
| 10-11 DEC 1997 | (<1U)                | (<1U)                 | (<1U)                                 | (<1U)   | ND     | (<1U) | (<10U)  | 98                   |  |
| 16-18 JUN 1998 | (<1U)                | (<1U)                 | 1                                     | 1       | 2      | 4     | (<10U)  | (<50U)               |  |
|                |                      |                       | MW                                    | 7-61R   |        |       |         |                      |  |
| 24-25 JUN 1997 | (<1U)                | 1                     | (<1U)                                 | (<1U)   | 1      | (<1U) | . 32    | 320 <sup>(a)</sup>   |  |
| 10-11 DEC 1997 | (<1U)                | (<1U)                 | (<1U)                                 | (<1U)   | ND     | (<1U) | 75      | 210                  |  |
| 16-18 JUN 1998 | (<1U)                | (<1U)                 | (<1U)                                 | (<1U)   | ND     | 5     | (<10U)  | 86                   |  |
| MW-62          |                      |                       |                                       |         |        |       |         |                      |  |
| 10 JUN 1996    | (<1U)                | (<1U)                 | (<1U)                                 | (<1U)   | ND     | (<1U) | (<50U)  | (<100U)              |  |
| 4-5 DEC 1996   | (<1U)                | (<1U)                 | (<1U)                                 | (<1U)   | ND     | (<1U) | 11      | 52                   |  |
| 24-25 JUN 1997 | (<1U)                | (<1U)                 | (<1U)                                 | (<1U)   | ND     | (<1U) | (<25U)  | 58                   |  |
| 10-11 DEC 1997 | (<1U)                | (<1U)                 | (<1U)                                 | (<1U)   | ND     | (<1U) | (<10U)  | 64                   |  |
| 16-18 JUN 1998 | (<1U)                | (<1U)                 | (<1U)                                 | (<1U)   | ND     | (<1U) | (<1U)   | 76                   |  |
|                |                      |                       | MV                                    | V-211   |        |       |         |                      |  |
| 4-5 DEC 1996   | 1,300 <sup>(b)</sup> | 12,000 <sup>(b)</sup> | 250                                   | 2,770   | 16,320 | 120   | 30,000  | 6,700 <sup>(d)</sup> |  |
| 24-25 JUN 1997 | 510D                 | 20,000D               | 200                                   | 950     | 21,660 | (<1U) | 24,000  | 3,000D               |  |
| 10-11 DEC 1997 | 110                  | 5,800D                | 56                                    | 335     | 6,301  | (<1U) | 19,000D | 1,700                |  |
| 16-18 JUN 1998 | (<1U)                | 2,500D                | 58                                    | 190     | 2,748  | (<1U) | 4,400   | 900                  |  |
|                |                      |                       | MV                                    | 7-213   |        |       |         |                      |  |
| 4-5 DEC 1996   | (<1U)                | (<1U)                 | 2.0                                   | (<1U)   | 2.0    | (<1U) | 100     | 66D                  |  |
| 24-25 JUN 1997 | (<1U)                | (<1U)                 | (<1U)                                 | (<1U)   | ND     | (<1U) | (<25U)  | 180                  |  |
| 10-11 DEC 1997 | (<1U)                | (<1U)                 | (<1U)                                 | (<1U)   | ND     | (<1U) | 52      | 79                   |  |
| 16-18 JUN 1998 | (<1U)                | (<1U)                 | (<1U)                                 | (<1U)   | ND     | (<1U) | 22      | (<50U)               |  |

#### REFERENCES

- ABB Environmental Services, Inc. (ABB-ES). 1994. Final Long-Term Monitoring Plan for Building 95, Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine. August.
- EA Engineering, Science, and Technology. 1997a. Summary Report, Biosparging System Operations, at Old Navy Fuel Farm, January-June 1997, Naval Air Station, Brunswick, Maine. August.
- EA. 1997b. Summary Report, Biosparging System Operations, at Old Navy Fuel Farm, August-December 1996, Naval Air Station, Brunswick, Maine. August.
- EA. 1998. Summary Report, Biosparging System Operations at Old Navy Fuel Farm, July-December 1997, Naval Air Station, Brunswick, Maine. July.
- Maine Department of Environmental Protection (MEDEP). 1995. Procedural Guidelines for Establishing Standards for the Remediation of Oil Contaminanted Soil and Ground Water in Maine.
- Maine State Legislature, Office of Policy and Legal Analysis. 1998. Memo addressed to members of the Natural Resources Committee and Health and Human Services Committee. 3 June
- Mormile, M.R., S. Liu, and J.M. Suflita. 1994. Anaerobic Biodegradation of Gasoline Oxygenates: Extrapolation of Information to Multiple Sites and Redox Conditions. *Environ. Sci. Technol.* 28(9): 1727-1732.
- Naval Facilities Engineering Service Center (NFESC). 1996. Technical Requirements to Consider When Preparing a Scope of Work for Full-Scale Implementation of Bioventing. Technical Memorandum No. TM-2186-ENV.
- O'Brien & Gere Engineers, Inc. 1990. Design and Installation of Underground Storage Tank Monitoring System, Naval Air Station Fuel Farm, Brunswick, Maine. Prepared for Department of the Navy, NAVFAC, Northern Division. April.
- O'Brien & Gere Engineers, Inc. 1992. Remedial Investigation, Fuel Farm, Naval Air Station, Brunswick, Maine. Department of the Navy, NAVFAC, Northern Division. July.
- U.S. Environmental Protection Agency (U.S. EPA). 1994. National Primary Drinking Water Standards. Office of Water, Washington, D.C. EPA 610-P-94-001. February.
- U.S. EPA. 1996. How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites. A Guide for Corrective Action Plan Reviewers. Document No. 510-B-95-007. May.

#### Appendix A

Field Record of Water Quality Analysis Forms



| EA Personnel: SC, BA | Date: 116/98                      | Time:       |
|----------------------|-----------------------------------|-------------|
| Weather: rainy 40°   | Equipment: VSI 600 - Solinstinter | staes mater |

| Location | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | рН   | Temperature (°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity (µhmos) | Redox<br>(mV) | Riser | Bottom |
|----------|------------------------|-----------------------------|------|------------------|-------------------------------|----------------------|---------------|-------|--------|
| WP-1     | 4.96                   |                             | 5.49 | 4.85             | 5.56                          | 187                  | 204           |       |        |
| WP-2     | 5.87                   | <b>۔۔۔</b> ,                | 5.83 | 3.15             | 5.78                          | 96                   | 194           |       |        |
| WP-3     | 4.91                   |                             | ડ.બ  | 5,37             | 5.81                          | 39                   | 162           |       |        |
| WP-4     | 6.85                   |                             | 6113 | 5, 39            | 6.92                          | 120                  | 173           |       |        |
| WP-5     | 5.67                   |                             | 5,18 | 5,74             | 6.28                          | 29                   | 201           |       |        |
| WP-6     | 4.91                   |                             | 5,87 | 5.46             | 6.98                          | 32                   | 191           |       |        |
| WP-7     | 5.46                   |                             | 5,69 | 3.60             | 6.12                          | 93                   | 78            |       |        |
| WP-8     | 5,22                   |                             | 6.61 | 4.74             | 5,28                          | 167                  | 172           |       |        |
| WP-9     | Dry                    |                             |      |                  |                               |                      |               | ·     |        |
| WP-10    | 5.86                   | )                           | 5.65 | 7.98             | 6.58                          | 58                   | 204           |       |        |
| WP-11    | 5.72                   |                             | 5,58 | 4.36             | 691                           | 53                   | 208           |       |        |
| WP-12    | Ory                    |                             |      |                  |                               |                      |               |       |        |
| WP-13    | 4.61                   |                             | 627  | 1,24             | 9.89                          | 41                   | 174           |       |        |
| WP-14    | 6:52                   |                             | 7.03 | 6.27             | 9,12                          | 19                   | 153           |       |        |
| WP-15    | 6.32                   |                             | 5,89 | 5.09             | 6.96                          | 26                   | 193           |       |        |
| WP-16R   |                        |                             |      |                  |                               |                      |               |       |        |
| WP-17R   |                        |                             |      |                  |                               |                      |               |       |        |
| WP-18R   | -                      |                             |      |                  |                               |                      |               |       |        |
| WP-20    | 6.02                   |                             | b,36 | 1,37             | 10.12                         | 32                   | 174           |       |        |
| WP-21    |                        |                             |      |                  |                               |                      |               |       |        |
| WP-22    |                        |                             |      |                  |                               |                      |               |       |        |

EA 5120 0794-7



| EA Personnel: SC, BA | Date: 1/6/98              | Time:              |
|----------------------|---------------------------|--------------------|
| Weather: 40° rainy   | Equipment: 15I-600 Solins | it intorface meder |

|        | Location | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | рН   | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity (µhmos) | Redox<br>(mV) | Riser    | Bottom  |
|--------|----------|------------------------|-----------------------------|------|---------------------|-------------------------------|----------------------|---------------|----------|---------|
| X      | 911 X    | 7.93                   |                             | 594  | 6.56                | 9.74                          | 101                  | 210           |          |         |
| $\chi$ | 313X     | 7.55                   | ·                           | 6,55 | 7,32                | 9.05                          | 31                   | 205           |          |         |
| X      | 51X      | 5,62                   | -                           | 7,24 | 7.66                | 6.88                          | 55                   | 199           |          |         |
| X      | 49-      | 5.81                   |                             | 6.39 | 7.09                | 7.21                          | 63                   | 230           |          |         |
| Υ      | 58 Y     | 6.22                   |                             | 6,37 | 7,69                | 5,84                          | 38                   | 216           |          |         |
| X      | 431      | dry                    | <del></del>                 |      |                     |                               |                      |               |          |         |
| 6      | 61R X    | 5.09                   | <del>د - ,</del>            | 6.01 | Siag                | 4,74                          | 79                   | 134           |          |         |
| X      | 44 🗸     | 3.59                   | <del></del>                 | 5.80 | 4.91                | 5.68                          | 5]                   | 188           |          |         |
| X      | 63ªX     | 9.35                   | ~                           | 5,93 | 8.01                | 6,28                          | 47                   | 179           |          |         |
| ×      | 56R V    | blocked                |                             |      |                     |                               |                      |               |          |         |
| X      | 54 X     | 6.74                   | _                           | 4,95 | 60,60               | 6.5i                          | 83                   | 209           |          |         |
|        |          |                        |                             |      |                     |                               |                      |               |          | <u></u> |
|        |          |                        |                             |      |                     |                               |                      |               |          |         |
|        |          |                        |                             |      |                     |                               |                      |               |          |         |
|        |          |                        |                             |      |                     |                               |                      |               |          |         |
|        |          |                        |                             |      |                     |                               |                      |               | <u> </u> |         |
|        |          |                        |                             |      |                     |                               |                      |               |          |         |
| ł      |          |                        |                             |      |                     |                               |                      | <u> </u>      |          |         |
|        |          |                        |                             |      |                     |                               |                      |               |          |         |
|        |          |                        |                             |      |                     |                               |                      |               |          |         |
|        |          |                        |                             |      |                     |                               |                      |               |          |         |
| - {    |          |                        |                             |      |                     |                               |                      |               |          |         |
|        | Comments |                        |                             |      |                     |                               |                      |               |          |         |



| EA Personnel: BDA  | Date: 1122198            | Time: 1030                  |
|--------------------|--------------------------|-----------------------------|
| Weather: Cold Geal | Equipment: YST 6100/ Sko | erface probe<br>e indicator |

| Location | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | pН    | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity (µhmos) | Redox<br>(mV) | Bottom |
|----------|------------------------|-----------------------------|-------|---------------------|-------------------------------|----------------------|---------------|--------|
| WP-1     | 4.97                   | _                           | 5,74  | 3.13                | 5.09                          | 218                  | 140           |        |
| WP-2     | 5,92                   | (                           | 5,93  | 3,28                | 5,49                          | 117                  | 176           |        |
| WP-3     | 4.82                   | (                           | 5,47  | 4,88                | 2.86                          | 49                   | 181           |        |
| WP-4     | 6.71                   | _                           | 6.19  | 4.53                | 18,5                          | 178                  | 141           |        |
| WP-5     | 5,82                   | _                           | 5,38  | 5,57                | 369                           | 63                   | 217           |        |
| WP-6     | 4.99                   |                             | 5,55  | ユビ                  | 3,31                          | 77                   | 149           |        |
| WP-7     | 5,65                   | _                           | 5,83  | 3.61                | 2.90                          | 193                  | 59            |        |
| WP-8     | 6.42                   | _                           | 6.04  | 3,78                | 6.69                          | 224                  | 187           |        |
| WP-9     | Dry                    |                             |       |                     |                               |                      |               |        |
| WP-10    | 6.06                   |                             | 5.04  | 6.56                | 3,86                          | 70                   | 253           |        |
| WP-11    | 6.06                   |                             | 5,92  | 4.20                | 4,34                          | 5                    | 127           |        |
| WP-12    | DIY                    |                             |       |                     |                               |                      |               |        |
| WP-13    | 7.70                   | B0+                         | om C  | out                 |                               |                      |               |        |
| WP-14    | 6,63                   |                             | 5,53  | 4:66                | 3.17                          | 67                   | 207           |        |
| WP-15    | 6.58                   |                             | 5.65  | 4.66                | 5,82                          | 78                   | 166           |        |
| WP-16R   | Froze                  | 20 a-                       | - Gin | level               |                               |                      |               |        |
| WP-17R   | 8,70                   |                             |       |                     |                               | ·                    |               |        |
| WP-18R   | Froze                  | n at                        | 61n   | level               |                               |                      |               |        |
| WP-20    | 6.44                   | _                           | 61.0  | 2,48                | 10,58                         | 249                  | 181           |        |
| WP-21    | 6,95                   | Icy                         |       |                     |                               |                      |               |        |
| WP-22    | אר,ר                   |                             |       |                     |                               |                      |               |        |

EA 5120 0794-7



| EA Personnel: B. Andersen   | Date: 1 22 98            | Time: 1030    |
|-----------------------------|--------------------------|---------------|
| Weather: Clear, Cold (16°F) | Equipment: YST (NOD) /In | lerface probe |

| Location | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | pН   | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivit<br>y (µhmos) | Redox<br>(mV)                         | Bottom |
|----------|------------------------|-----------------------------|------|---------------------|-------------------------------|--------------------------|---------------------------------------|--------|
| 43       | Dry                    |                             |      |                     |                               |                          |                                       |        |
| 211      | 8,73                   |                             | 5.83 | 3,46                | 5.80                          | 158                      | 174                                   |        |
| 213      | 6.89                   |                             | 6.56 | 6.35                | 8,47                          | 39                       | 146                                   |        |
| 54       | 6.75                   |                             | 5,83 | 7,55                | 2,47                          | 100                      | 228                                   |        |
| 44       | 3,55                   |                             | 5,97 | 4,95                | 3.51                          | 71                       | 127                                   |        |
| GIR      | 5,22                   |                             | 5,65 | 4,75                | 4.11                          | 101                      | 147                                   |        |
| 60       | 9,85                   |                             | 5.93 | 7.15                | 7.26                          | 56                       | 200                                   |        |
| 51       | 5.07                   |                             | 6.38 | 5,30                | 5,70                          | 80                       | 176                                   |        |
| 5φ       | Block                  | ed                          |      |                     |                               |                          |                                       |        |
| 58       | 6.15                   |                             | 6,14 | 6.87                | 5.26                          | 49                       | 181                                   |        |
| 49       | 5,83                   |                             | 6.07 | 6.79                | 6.41                          | ヿゐ                       | 187                                   |        |
|          |                        |                             |      |                     |                               |                          |                                       |        |
|          |                        |                             |      |                     |                               |                          |                                       |        |
|          | /9 45                  | -                           |      |                     |                               |                          | · · · · · · · · · · · · · · · · · · · |        |
|          |                        |                             |      |                     |                               |                          |                                       |        |
|          |                        |                             |      |                     |                               |                          |                                       |        |
|          |                        |                             |      |                     |                               |                          |                                       |        |
|          |                        |                             |      |                     |                               |                          |                                       |        |
|          |                        |                             |      | <u> </u>            |                               |                          |                                       |        |
| Comments | <b>::</b>              |                             |      |                     |                               |                          |                                       |        |
|          |                        |                             |      |                     |                               |                          |                                       |        |
|          |                        |                             |      |                     |                               |                          |                                       | •      |
|          |                        |                             |      |                     |                               |                          |                                       |        |



| EA Personnel: MDC | Date: 215198                  | Time:   |
|-------------------|-------------------------------|---------|
| Weather:          | Equipment: Interface meter 15 | I WOOYL |

| ĺ |          |                        | Depth to    |      | <del></del>         | Dissolved     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |
|---|----------|------------------------|-------------|------|---------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|
|   | ¥        | Depth to<br>Water (ft) | Product     |      | Temperature<br>(°C) | Oxygen (mg/L) | Conductivity (µhmos)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Redox<br>(mV) | Bottom |
|   | Location |                        | (ft)        | pH   |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (111 V)       | Bottom |
| E | WP-1     | 4,80                   | -           | 5,59 | 4,20                | 7,43          | 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146           |        |
|   | WP-2     | קהַר                   |             | 5.89 | 3,33                | 5,38          | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 144           |        |
|   | WP-3     | 4,45                   |             | 5.45 | 4,63                | 5,22          | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 167           |        |
|   | WP-4     | 6,46                   | ·           | 5,82 | 3,90                | 7,05          | 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114           |        |
| ٥ | WP-5     | 5,58                   |             | 5,42 | 4,70                | 6,06          | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 144           |        |
|   | WP-6     | 4,65                   |             | 5,72 | 4.55                | 4,47          | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 147           |        |
|   | WP-7     | 5,47                   | _           | B100 | Ked                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |
| X | WP-8     | 6,05                   | 1           | 6.66 | 3.19                | 12.79         | 189_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100           |        |
|   | WP-9     | DIY                    |             |      |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |
|   | WP-10    | 5,65                   |             | 5,86 | 6.24                | ماه.ما        | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 156           |        |
|   | WP-11    | Froz                   | en-         |      |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |
|   | WP-12    | DN                     |             |      |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |
|   | WP-13    | Froz                   | en-         |      |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |
|   | WP-14_   | Froz                   | en -        |      |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |
|   | WP-15    | 8,00                   |             | 5,98 | 4,11                | 9,33          | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 187           |        |
|   | WP-16R   | Froz                   |             |      |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |
|   | WP-17R   | Froz                   | en -        |      |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |
|   | WP-18R   | Froz                   | en-         | 6.00 | 2,10                |               | And the same of th |               |        |
|   | WP-20    | 6.45                   | <b>6.00</b> | 2100 | 10-60%              | 10:60         | 716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 175           |        |
|   | WP-21    | Froz                   | en -        |      |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |
| ĺ | WP-22    | Froz                   | en_         |      |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |

EA 5120 0794-7 \* WP8 Sparging



| EA Personnel: MOC | Date: 215 198             | Time      |
|-------------------|---------------------------|-----------|
| Weather:          | Equipment: inlerior meles | 75J-600XL |

| ĺ   | Location  | Depth to Water (ft) | Depth to<br>Product<br>(ft) | рН   | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity (µhmos) | Redox<br>(mV) | Riser    | Bottom   |
|-----|-----------|---------------------|-----------------------------|------|---------------------|-------------------------------|----------------------|---------------|----------|----------|
|     | × 43°     | DRY                 |                             |      |                     |                               |                      |               |          |          |
| V   | 2118      |                     |                             | 5.84 | 5.09                | 9.46                          | 207                  | 163           |          |          |
| ×   |           | 6.70                | _                           | 614  | 6.26                | 7,47                          | 34                   | 146           |          |          |
| < A | 54        | ×6.5d               |                             | 7.20 | 7.69                | 3.05                          | 163                  | 182           |          |          |
| بر  | 44        | 3,35                |                             | 5.75 | 4.75                | 5,35                          | 61                   | 131           |          |          |
| < D | 61R       | 4.97                |                             | 5167 | 4.41                | 4,71                          | 98                   | 130           |          |          |
| c F | 62        | 8.82                | ,                           | 6.56 | 6.48                | 3.84                          | 50                   | 120           |          |          |
| X   |           | 5.10                |                             | 6.12 | 4.93                | 3.76                          | 5-7                  | 174           |          |          |
| K   | 56R       | ·                   |                             | -    |                     |                               |                      |               |          | ļ        |
| 1   | × 58 🎉    | 10.20               |                             | 6.11 | 6.78                | 5.44                          | 41                   | 184           |          | ļ        |
| į   | × 49      |                     | <del></del> .               |      |                     |                               |                      |               |          |          |
|     | ;<br>     |                     |                             |      |                     |                               |                      |               |          |          |
|     |           |                     |                             |      |                     |                               |                      |               |          |          |
|     |           |                     |                             |      |                     |                               |                      |               |          |          |
|     |           |                     |                             |      |                     |                               |                      |               |          | ļ        |
|     |           |                     |                             |      |                     |                               |                      |               |          | <u> </u> |
|     |           |                     |                             |      |                     |                               |                      |               |          |          |
|     |           |                     |                             |      |                     |                               |                      |               | <u> </u> |          |
|     |           |                     |                             |      |                     |                               |                      | ·             |          |          |
|     |           |                     |                             |      |                     |                               |                      |               |          |          |
|     |           |                     |                             |      |                     |                               |                      |               |          |          |
|     |           |                     |                             |      |                     |                               |                      |               |          |          |
|     | Comments: | 0                   |                             |      |                     | <del></del>                   |                      | <u></u>       |          |          |



| EA Personnel: MOC | Date: 2115                  | Time:    |
|-------------------|-----------------------------|----------|
| Weather: Sunny    | Equipment: YSI-10081 interf | ra metis |

| Location | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | рН   | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity (µhmos) | Redox<br>(mV)   | Riser | Bottom |
|----------|------------------------|-----------------------------|------|---------------------|-------------------------------|----------------------|-----------------|-------|--------|
| WP-1     | 4.90                   |                             | 5.56 | 3.39                | 2.2 <b>(102)</b>              | 291                  | 180             |       |        |
| WP-2     | 5.85                   |                             | 6.32 | 2-79                | 3,89                          | るえ                   | 141             |       |        |
| WP-3     | 4.82                   |                             | 5.60 | 4,22                | 3,13                          | 43                   | 176             |       |        |
| WP-4     | 6.65                   |                             | 5.89 | 3,07                | 2.87                          | 145                  | 70              |       |        |
| WP-5     | 5.72                   |                             | 5.42 | 4.37                | 4,94                          | 75                   | 194             |       |        |
| WP-6     | 500                    |                             | 5.68 | 4.36                | 3.56                          | 76                   | 140             |       |        |
| WP-7     | Block                  | Ked                         |      |                     |                               |                      |                 |       |        |
| WP-8     | 6.40                   |                             | 5,61 | 2-85                | 8.48                          | 105                  | 191             |       |        |
| WP-9     | DRY                    |                             |      |                     |                               |                      |                 |       |        |
| WP-10    | 7.56                   |                             | 5.37 | 5-22                | 6.79                          | 66                   | 223             |       |        |
| WP-11    | Frozen                 |                             |      |                     |                               |                      |                 |       |        |
| WP-12    | DRY                    |                             |      |                     |                               |                      |                 |       |        |
| WP-13    | Can                    | not o                       | nen  |                     |                               |                      |                 |       |        |
| WP-14    | Fr02                   | en                          |      |                     |                               |                      |                 |       |        |
| WP-15    | 6.35                   |                             | 5.8  | 3.36                | A                             | 68                   | <i>સત્ર</i> ત્ર |       |        |
| WP-16R   | Fro 2er                | )                           |      |                     | :                             |                      |                 |       |        |
| WP-17R   | Froze/                 | )                           |      |                     |                               |                      |                 |       |        |
| WP-18R   | Froze                  | i i                         |      |                     |                               |                      |                 |       |        |
| WP-20    | 6.00                   |                             | 6.03 | 1,62                | 10.57                         | (y)                  | 178             |       |        |
| WP-21    | Frozer                 | \                           |      |                     |                               |                      |                 |       |        |
| WP-22    | 1-r02e                 | η                           |      |                     |                               |                      |                 |       |        |

EA 5120 0794-7

A - DO Probe frozen stopped Taking readings



| EA Personnel: WO  | Date: 215              | Time:       |
|-------------------|------------------------|-------------|
| Weather: Sunny 70 | Equipment: YSI-600KL , | nietacemela |

|    | Location         | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | рН      | Temperature (°C)       | Dissolved<br>Oxygen<br>(mg/L) | Conductivity (µhmos) | Redox<br>(mV) | Riser | Bottom   |
|----|------------------|------------------------|-----------------------------|---------|------------------------|-------------------------------|----------------------|---------------|-------|----------|
|    | × 43             | OB                     | \ <u>/</u>                  |         |                        |                               |                      |               |       |          |
| 大州 | 2118             | 3,40                   | 7                           | 5.91    | 3,57                   | 4.81                          | 209                  | 15-2          |       |          |
| ×  | 2134             | 6.45                   |                             | 6,22    | 5.17                   | 7,25                          | 38                   | 149           |       |          |
| ۶  |                  | ,6,30                  |                             | 3.79    | 4.33                   | 10.3                          | 3                    | 377           |       |          |
| ĸ  |                  | 3.47                   |                             | 5.92    | 4.68                   | 3,28                          | 61.80                | 159           |       |          |
| X  | 61RX             | 5.05                   |                             | 5.69    | 2,27                   | 6.45                          | 80                   | 146           |       |          |
| ×  | 62×              | 18,40                  |                             | 5.82    | 6.24                   | 5.91                          | 57                   | 149           |       |          |
|    | x 51X            | FROZ.                  | EN.                         |         |                        |                               |                      |               |       |          |
| ĸ  | 56R <sup>X</sup> | Blocke<br>6,05         | d                           |         |                        |                               |                      |               |       |          |
|    | × 58×            | 6,05                   |                             | 424     | 6.25<br>3.72           | 17                            | 42                   | 189           |       |          |
| 46 | BY X             | 5.32                   |                             | 600     |                        | A                             | 181                  | 193           |       |          |
|    | ×49X             | 5,58                   |                             | 6.44    | 5.39                   | Α                             | 51                   | 181           |       |          |
|    |                  |                        |                             | •       |                        |                               |                      |               |       |          |
|    |                  |                        |                             |         |                        |                               | -                    |               |       |          |
|    |                  |                        |                             |         |                        |                               |                      |               |       | <u> </u> |
|    |                  |                        |                             |         |                        |                               |                      |               |       |          |
|    |                  |                        |                             |         |                        |                               |                      |               |       |          |
|    |                  |                        |                             |         |                        |                               |                      |               |       |          |
|    |                  |                        |                             |         |                        |                               |                      |               |       |          |
|    | ····             |                        | -                           |         |                        |                               |                      |               |       |          |
|    |                  |                        |                             |         |                        |                               |                      |               |       |          |
|    |                  |                        |                             | <u></u> | , ,                    |                               |                      | <u> </u>      |       |          |
| /S | Comments:        | * 711 4                | and to b                    | reak    | layer of<br>Taking rea | ice or                        | 140 06               | water         |       |          |
| 7) | A-100            | ) thope                | FLOSEN                      | Stup    | linking rea            | cich ing s                    |                      |               |       |          |
|    |                  |                        |                             |         |                        | ···                           |                      |               |       |          |

EA 5120 0794-7



| EA Personnel: SAP KC | Date: 3/2/98 | Time: 14 40 |
|----------------------|--------------|-------------|
| Weather: Sunny 50°   | Equipment:   |             |

|                |                        |                             | ·                |                     | <del>,</del>                  | <del>,</del>         |                       |       |        |
|----------------|------------------------|-----------------------------|------------------|---------------------|-------------------------------|----------------------|-----------------------|-------|--------|
| Location       | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | рН               | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity (µhmos) | Redox<br>(mV)         | Riser | Bottom |
| WP-1           | 3,44                   | _                           | 5.68             | 1,27                | 9.27                          | 239                  | 189.1                 |       |        |
| WP-2           | 4,74                   |                             | 5.62             |                     | 5.86                          | 94                   | 214.8                 |       |        |
| WP-3           | 3.39                   | _                           | 6.46             | 1.63                | 10.97                         | 31                   | 182.7                 |       |        |
| WP-4           | 4,67                   | 1                           |                  | 1.75                | 9.84                          | 105                  | 191.2                 |       |        |
| WP-5           | 5.02                   | )                           |                  | 4,58                | 5.05                          | 86                   | 194,4                 |       |        |
| WP-6           | 3,93                   | -                           | 5,30             | 3.16                | 6.10                          | 72                   | 228.9                 |       |        |
| WP-7           | 4.11                   | _                           | 6.11             | 0.99                | 6.04                          | 89                   | 198.6                 |       |        |
| WP-8           | 4.82                   |                             | 6.28             | 3, 25               | 9.73                          | 91                   | 185.6                 |       |        |
| WP-9           | Dry                    |                             |                  |                     |                               |                      |                       |       |        |
| WP-10          | 4,64                   | <u> </u>                    | 5.53             | 5.46                | 6,81                          | 41                   | 196.5                 |       |        |
| WP-11          | Dry                    |                             |                  |                     |                               |                      |                       |       |        |
| WP-12          | 7,49                   |                             | 5.77             | 4.04                | 7.09                          | 39                   | 175.3                 |       |        |
| WP-13          | 4.19                   |                             | 5.99             | 1.77                | 7.19                          | 47                   | 185.9                 |       |        |
| WP-14          | 4.25                   |                             | 5.40             | 3.96                | 3.01                          | 168                  | 185.7                 |       |        |
| WP-15          | 5.05                   | .—                          | 5.89             | 3,35                | 5.64                          | 73<br>4,13,45        | 211.9                 |       |        |
| WP-16R         | 8.49                   |                             | 11. 9.4<br>H. 24 | 37,47               | 11.76<br>H. 45                | 4.13.45              | 211.9<br>=7.5<br>=7.5 |       |        |
| WP-17R         | Day!                   | ·                           |                  |                     |                               |                      |                       |       |        |
| WP-18R         | . '                    |                             |                  |                     |                               |                      |                       |       |        |
| WP-20          | 4.57                   |                             | 6.00             | 2.03                | 8.46                          | 71                   | 193,7                 |       |        |
| WP-21 <b>Q</b> | Block                  | 뵨                           |                  | <u></u>             |                               |                      |                       |       |        |
| WP-22          |                        |                             |                  |                     |                               |                      |                       |       |        |

to down

EA 5120 0194-7 Coud My get probe down



| EA Personnel: SAP KC | Date: 3/2/97 | Time: 14 40 |
|----------------------|--------------|-------------|
| Weather: Sunny 500   | Equipment:   |             |

| Loc         | cation | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | рН                                           | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity<br>(µhmos) | Redox<br>(mV)                                    | Riser       | Bottom         |
|-------------|--------|------------------------|-----------------------------|----------------------------------------------|---------------------|-------------------------------|-------------------------|--------------------------------------------------|-------------|----------------|
| K           | 43°    | 6.74                   |                             | 9,17                                         | 2.37                | 11.67                         | 28                      | 49,2                                             |             |                |
| 11          | 211    | 7.00                   |                             | 5.73                                         | 4.35                | 5.45                          | 204                     | 172.1                                            |             |                |
|             | 13/    | 5.99                   |                             | 7.83                                         | 5.13                | 8.54                          | 34                      | 96.9                                             |             |                |
| <u> </u>    | 54     | 5.32                   |                             | 6.47                                         | 5.48                | 7, 31                         | 57                      | 144.4                                            |             |                |
|             | 44     | 8.88                   |                             | 8,67                                         | 7,63                | 5.23                          | 259                     | 120.4                                            | <del></del> |                |
|             | 612    | 3.70                   |                             | 2.56                                         |                     | 10.76                         | 78                      | 120.8                                            |             |                |
|             | 62     | 7, 75                  |                             | 7,51                                         | 4.50                | 10.71                         | 64                      | 96.3                                             |             |                |
| <u> </u>    | 51     | 3.86                   |                             | 7.61                                         | 238                 | 8.73                          | 52                      | 135.9                                            | <u>-</u>    |                |
|             | 6R     | Block                  | eel                         | - (                                          | / 2 ::              |                               | 112                     |                                                  | <u> </u>    |                |
| x 6         |        | 8.78                   |                             | 7,90                                         |                     | 7.23                          | 43                      | 120.3                                            |             | <del> </del> - |
| K '         | 49     | 5,56                   | <del></del>                 | 8.01                                         | 6,24                | 4,79                          | 53                      | 125.9                                            |             |                |
| <u></u>     |        |                        |                             |                                              | ·                   |                               |                         |                                                  |             |                |
|             |        |                        |                             |                                              |                     |                               |                         |                                                  |             |                |
| ⊩           | -      |                        |                             |                                              |                     |                               |                         |                                                  |             |                |
| <b> </b>    |        |                        |                             |                                              |                     |                               |                         |                                                  |             |                |
| <b> -</b> - |        |                        |                             |                                              |                     |                               |                         |                                                  |             |                |
| ╟           |        |                        |                             |                                              |                     |                               |                         |                                                  |             | <del> </del>   |
| <b>-</b>    |        |                        |                             |                                              |                     |                               |                         |                                                  |             |                |
| <b> </b>    |        |                        |                             |                                              |                     |                               |                         | <del>                                     </del> |             |                |
| <b> </b>    |        |                        |                             |                                              |                     |                               |                         | <del> </del>                                     |             |                |
|             | !      |                        |                             |                                              |                     | -                             |                         |                                                  |             |                |
| <u> </u>    |        |                        |                             | <u>                                     </u> |                     | <u> </u>                      | <u> </u>                | <u></u>                                          | l           | 1              |
| Cor         | mments | :                      |                             |                                              |                     |                               |                         |                                                  |             |                |
|             |        |                        |                             |                                              |                     |                               |                         |                                                  |             |                |



| EA Personnel: KRISP        | Date: 03/18/98                    | Time: 1030      |
|----------------------------|-----------------------------------|-----------------|
| Weather: Synny, Mild: 40°F | Equipment: Slope Indicator #46, I | nterface probek |
|                            |                                   | JST             |

| Location | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | рН       | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity (µhmos) | Redox<br>(mV) | Bottom |
|----------|------------------------|-----------------------------|----------|---------------------|-------------------------------|----------------------|---------------|--------|
| WP-1     | 3,51                   |                             | 6.08     | 0,60                | 9,75                          | 160                  | 168           |        |
| WP-2     | 4.86                   |                             | 6.08     | 3.13                | 9,55                          | 85                   | 199           |        |
| WP-3     | 3,46                   |                             | 6,15     | 2.95                | 6,45                          | 46                   | 185           |        |
| WP-4     | 4,45                   |                             | 649      | 3.19                | 10.39                         | 94                   | 250           |        |
| WP-5     | 4,99                   |                             | 5,99     | 4,37                | 7,83                          | <i>පිපි</i>          | 167           |        |
| WP-6     | 3,89                   | -                           | 6.38     | 254                 | 878                           | 45                   | 175           |        |
| WP-7     | 4,09                   |                             | 6,40     | 1,53                | 9,67                          | 104                  | 1774          |        |
| WP-8     | 4,50                   |                             | 160      | 3.24                | 10,95                         | 501                  | 175           |        |
| WP-9     | 6.39                   |                             | 6,44     | 4.37                | 9.66                          | 126                  | 252           |        |
| WP-10    | 4.48                   |                             | 7.02     | 2.15                | 11,50                         | 28                   | 249           |        |
| WP-11    | 4,68                   |                             | ماما، ما | 2.38                | 11.05                         | 60                   | 848           |        |
| WP-12    | 6,48                   |                             | 6,50     | 3.18                | 11.10                         | 85                   | 252           |        |
| WP-13    | 4.57                   |                             | 6.66     | 2.61                | 5,02                          | 36                   | 247           |        |
| WP-14    | 5.12                   |                             | 6.88     | 2,53                | 11.79                         | 40                   | 246           |        |
| WP-15    | 4.92                   |                             | 6,75     | 2.92                | 11.86                         | 63                   | 249           | ,      |
| WP-16R   | 6.55                   |                             | 7,99     | 5.36                | 9,60                          | 157                  | 116           |        |
| WP-17R   | 6.80                   |                             | 08,8     | 4.92                | 9,61                          | 94                   | 114           |        |
| WP-18R   | 5,46                   |                             | 8,98     | 5.15                | 0.56                          | 79                   | 113           |        |
| WP-20    | 4,98                   |                             | 6,77     | 2.27                | 1122                          | 40                   | 234           |        |
| WP-21    | 6,05                   |                             | 6,90     | 5.78                | 9,93                          | 41                   | 145           |        |
| WP-22    | 5,74                   |                             | 9,02     | 4,40                | 8,83                          | 110                  | 101           |        |



| EA Person                  | nel: KR                | SP                          |        | Date:               | 03/18/                        | 98                      |               | Time:   | 1030   |
|----------------------------|------------------------|-----------------------------|--------|---------------------|-------------------------------|-------------------------|---------------|---------|--------|
| weather. Sunny, mild, 40°F |                        |                             |        | Equipme             | nt: Slope in                  | rdicator #              | Yla, ir       | nterbar | apole  |
|                            |                        |                             |        |                     | 9                             | <b>ST</b>               |               |         |        |
| Location                   | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | pН     | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity<br>(µhmos) | Redox<br>(mV) | Riser   | Bottom |
| / ¥ <sup>2</sup> H3        | 6.17                   |                             | ४वे. ७ | 2.50                | 13.42                         | 0                       | 237           |         |        |
|                            | 3010                   |                             | 153    |                     | Unu                           |                         | ILIV          |         |        |

12.38 3.87 7,87 10,00 6,85 238 20 હિત્સન 6.11 6,35 8,07 62 636 613 13.82 32 a.36 Blocked 5,54 8.90 239 <u>6.90</u> 39 244 6.98 6.64 5,46 38 196 6.21 1,86 × Comments:



| EA Personnel: M. Chrise, J. Hitchins | Date: 4/19/98 | Time: 13:00 |
|--------------------------------------|---------------|-------------|
| Weather: 54NNY 550                   | Equipment:    |             |

| Location | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | рН   | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity (µhmos) | Redox<br>(mV) | Riser             | Bottom |
|----------|------------------------|-----------------------------|------|---------------------|-------------------------------|----------------------|---------------|-------------------|--------|
| WP-1     | 4.38                   |                             | 5.65 | 5.57                | 5.79                          | 2.45                 | 158           |                   |        |
| WP-2     | 5.33                   |                             | 5.95 | 6.17                | 6.02                          | 140                  | 143           |                   |        |
| WP-3     | 3,83                   |                             | 3,72 | 5.67                | 6.26                          | 4/7                  | 171           |                   |        |
| WP-4     | 4.96                   |                             | 5.76 | 6.54                | 7.00                          | 115                  | 152           |                   |        |
| WP-5     | 5,31                   |                             | 5,50 | 6.13                | 2,92                          | 93                   | 17/           |                   |        |
| WP-6     | 4.20                   |                             | 5.85 | 4.94                | 5.05                          | 50                   | 164           |                   |        |
| WP-7     | 4.63                   |                             | 574  | 6.15                | 7,00                          | 240                  | 107           |                   |        |
| WP-8     | 4.94                   |                             | 5.69 | 5,97                | 11.68                         | 188                  | 169           | 141R 599<br>111 W | 7.3    |
| WP-9     | 6.02                   |                             | 6.00 | 6.59                | 9,17                          | 157                  | 169           |                   |        |
| WP-10    | 4.70                   |                             | 5.60 | 5.71                | 2,36                          | 58                   | 173           |                   |        |
| WP-11    | 5.06                   |                             | 6.02 | 5.82                | 7.73                          | 90                   | 165           |                   |        |
| WP-12    | 6.53                   |                             | 6.34 | 5,77                | 171                           | 82                   | 143           |                   |        |
| WP-13    | 4.98                   |                             | 6.16 | 6.21                | 1.54                          | 45                   | 152           |                   |        |
| WP-14    | 5.41                   |                             | 5.88 | 6.21                | 2,39                          | 117                  | 183           |                   |        |
| WP-15    | 5.32                   | -                           | 5.81 | 6.47                | 6.29                          | 61                   | 151           |                   |        |
| WP-16R   |                        |                             |      |                     |                               |                      |               |                   |        |
| WP-17R   |                        |                             |      |                     |                               |                      |               |                   |        |
| WP-18R   |                        |                             |      |                     |                               |                      | ·             |                   |        |
| WP-20    | 5,43                   |                             | 5.81 | 6.10                | 4.77                          | 477                  | 176           |                   |        |
| WP-21    |                        |                             |      |                     |                               |                      |               |                   |        |
| WP-22    |                        |                             |      |                     |                               |                      | <u></u>       |                   |        |



| EA Personnel: M. Chase, J. Hutchins | Date: 4/14/98 | Time: 13:∞ |
|-------------------------------------|---------------|------------|
| Weather: Clena, 55°,                | Equipment:    |            |

| 170<br>39<br>38<br>76<br>45<br>85<br>43 | 144<br>141<br>151<br>158<br>146 |            |                                              |
|-----------------------------------------|---------------------------------|------------|----------------------------------------------|
| 39<br>38<br>76<br>45                    | 141<br>151<br>158<br>146        |            |                                              |
| 76<br>45<br>85                          | 158<br>146                      |            |                                              |
| 45<br>85                                | 158<br>146                      |            |                                              |
| 85                                      |                                 |            | <b>!</b>                                     |
| 85<br>43                                | 155                             |            |                                              |
| 85                                      | 155                             |            |                                              |
| 43                                      |                                 |            |                                              |
|                                         | 140                             | . <u>-</u> |                                              |
| 61                                      | 154                             |            |                                              |
| 75                                      | 276                             |            |                                              |
| 191                                     | 172                             |            | ļ                                            |
|                                         |                                 |            | <u>                                     </u> |
|                                         |                                 |            |                                              |
|                                         |                                 |            |                                              |
| ·                                       |                                 |            | <del> </del>                                 |
|                                         |                                 |            | <b>}</b>                                     |
|                                         |                                 |            | <b></b>                                      |
|                                         |                                 |            |                                              |
|                                         |                                 |            | <del> </del>                                 |
|                                         |                                 |            | <del> </del>                                 |
|                                         |                                 |            | <del> </del>                                 |
|                                         |                                 | <u> </u>   | <u>L</u>                                     |
|                                         |                                 |            |                                              |
|                                         |                                 |            |                                              |
|                                         |                                 |            |                                              |



| EA Personnel: M. Chase | Date: 4125198 | Time: |
|------------------------|---------------|-------|
| Weather:               | Equipment:    |       |

| Location | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | рН   | Temperature (°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity<br>(µhmos) | Redox<br>(mV) | Bottom |
|----------|------------------------|-----------------------------|------|------------------|-------------------------------|-------------------------|---------------|--------|
| WP-1     | 3,33                   | -53                         | 5,94 | 8,75             | 3.11                          | 88                      | 185           |        |
| WP-2     | 4,00                   |                             | 5.95 | 8,8              | 3,39                          | 176                     | 154           |        |
| WP-3     | 3.10                   |                             | 6.01 | 8,32             | 4,98                          | 45                      | 180           |        |
| WP-4     | 4.03                   |                             | 5.84 | 7,53             | 5,97                          | 91                      | 150           |        |
| WP-5     | 4,5]                   |                             | 5,90 | 7.03             | 6.87                          | 79                      | 233           |        |
| WP-6     | 3,25                   |                             | 5.74 | 6.88             | 5.00                          | 53                      | 184           |        |
| WP-7     | 3,35                   |                             | 5,79 | 9,29             | 2.05                          | 165                     | 177           |        |
| WP-8     | 3.34                   |                             | 5.66 | 00,8             | 9.67                          | 179                     | 160           |        |
| WP-9     | 5,38                   | ~                           | 6.09 | 8.31             | 7,35                          | 108                     | 153           |        |
| WP-10    | 3.35                   |                             | 6.18 | 7,4]             | 6.67                          | 90                      | 314           |        |
| WP-11    | 4.73                   |                             | 6,37 | _ 7,53           | 6,39                          | 105                     | 173           |        |
| WP-12    | 5,48                   |                             | 5.98 | 6,97             | 2.76                          | 78_                     | 190           |        |
| WP-13    | 3,76                   |                             | 6.38 | 8,31             | 1,79                          | 50                      | 180           |        |
| WP-14    | 4,59                   |                             | 5,97 | 7.78             | 3,01                          | 137                     | 120           |        |
| WP-15    | 5,00                   |                             | 5,43 | 6.98             | 4,38                          | 50                      | 157           |        |
| WP-16R   |                        |                             |      |                  |                               |                         |               |        |
| WP-17R   |                        | <u> </u>                    |      |                  |                               |                         |               |        |
| WP-18R   |                        |                             |      |                  |                               |                         |               |        |
| WP-20    | 3,98                   |                             | 671  | 8.31             | 3,99                          | 397                     | 180           |        |
| WP-21    |                        |                             |      |                  |                               |                         |               |        |
| WP-22    |                        |                             |      |                  |                               |                         |               |        |



| EA Personnel: | Date: 4125198 | Time: |
|---------------|---------------|-------|
| Weather:      | Equipment:    |       |

| Location | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | рН   | Temperature (°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity (µhmos) | Redox<br>(mV) | Riser    | Bottom    |  |  |  |  |  |  |  |  |
|----------|------------------------|-----------------------------|------|------------------|-------------------------------|----------------------|---------------|----------|-----------|--|--|--|--|--|--|--|--|
|          | 5.72                   | (11)                        | 691  | 7.57             |                               | 140                  | 175           | Riser    | Dottom    |  |  |  |  |  |  |  |  |
| Mw-211   | 4.35                   |                             | 6.57 | 6.98             | 2.19                          | 58                   | 143           | ļ        |           |  |  |  |  |  |  |  |  |
|          | <b>4</b> 4.03          |                             | 5-48 |                  | 4.72                          | 34                   | 187           |          |           |  |  |  |  |  |  |  |  |
|          | 5.61                   |                             | 6.38 | 5,74             | 3,61                          | 72                   | 198           |          |           |  |  |  |  |  |  |  |  |
| 58       |                        |                             | 5.98 | 6.97             | 4.78                          | 87                   | 123           | <u> </u> |           |  |  |  |  |  |  |  |  |
| 30       | 3.79                   |                             | 6.20 | 7.79             | 3.78                          | 142                  | 180           |          |           |  |  |  |  |  |  |  |  |
|          | 13.55                  |                             | 6.17 | 8.60             | 8.16                          | 85                   | 198           |          |           |  |  |  |  |  |  |  |  |
| 1.1      | 2.05                   |                             | 6,26 | 7.76             | 4.96                          | 42                   | 150           |          |           |  |  |  |  |  |  |  |  |
|          | 6.97                   |                             | 6.31 | 8.75             | 5198                          | 49                   | 175           |          |           |  |  |  |  |  |  |  |  |
| 54       | 4.40                   |                             | 6.85 | 8-12             | 7.78                          | 71                   | 291           |          |           |  |  |  |  |  |  |  |  |
|          |                        |                             |      |                  |                               |                      |               |          |           |  |  |  |  |  |  |  |  |
|          |                        |                             |      |                  |                               |                      |               |          |           |  |  |  |  |  |  |  |  |
|          |                        |                             |      |                  |                               |                      |               |          |           |  |  |  |  |  |  |  |  |
|          |                        |                             |      |                  |                               |                      |               |          |           |  |  |  |  |  |  |  |  |
|          |                        |                             |      |                  |                               |                      |               |          |           |  |  |  |  |  |  |  |  |
|          |                        |                             |      |                  |                               |                      |               |          |           |  |  |  |  |  |  |  |  |
|          |                        |                             |      | •                |                               |                      |               |          |           |  |  |  |  |  |  |  |  |
| }        |                        |                             |      |                  |                               |                      |               |          |           |  |  |  |  |  |  |  |  |
|          |                        | <u> </u>                    |      |                  |                               |                      |               |          |           |  |  |  |  |  |  |  |  |
|          |                        |                             |      |                  |                               | <u> </u>             |               |          |           |  |  |  |  |  |  |  |  |
|          |                        |                             |      |                  |                               |                      |               | -        |           |  |  |  |  |  |  |  |  |
|          |                        |                             |      |                  |                               | L                    | <u> </u>      | ţ        | <u> </u>  |  |  |  |  |  |  |  |  |
| Comments | :                      |                             |      |                  |                               |                      |               |          | Comments: |  |  |  |  |  |  |  |  |



| EA Personnel: RH. IBA         | Date: 7 MAY 98      | Time: 07co - /30c |
|-------------------------------|---------------------|-------------------|
| Weather: RAIN HEAVY AT TITHES | Equipment: YST 610D | SOLINST 121       |

| Location | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | рН    | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity<br>(µhmos) | Redox<br>(mV)     | Riser | Bottom |
|----------|------------------------|-----------------------------|-------|---------------------|-------------------------------|-------------------------|-------------------|-------|--------|
| WP-1     | 3.29                   | ~                           | 5.96  | 11.63               | 8.12                          | 202                     | 223               |       |        |
| WP-2     | 4.05                   | -                           | 6.04  | 11.95               | 834                           | <del>38</del> 97        | 223<br>199<br>194 |       |        |
| WP-3     | 2,67                   | _                           | 5.98  | 11.32               | 8.85                          | 58                      | 206               |       |        |
| WP-4     | 2,35                   | _                           | 6.45  | 11.92               | 8.35                          | 48                      | 2/2               |       |        |
| WP-5     | 3.30                   | 1                           | 6,27  | 11.66               | 10.14                         | 38                      | 194               |       |        |
| WP-6     | 2.32                   | }                           | 6.12  | 11.70               | 9.52                          | 28                      | 191               |       |        |
| WP-7     | 2.80                   | (                           | 6.05  | 12.02               | 9.15                          | 116                     | 227               |       |        |
| WP-8     | 2,58                   |                             | 6.09  | 11.40               | 11.19                         | 235                     | 229               | _     |        |
| WP-9     | 3.51                   |                             | 6,24  | 10.13               | 11.16                         | 120                     | 223               | .,    |        |
| WP-10    | 1,6                    |                             | 6.52  | 11.86               | 9.00                          | 39.0                    | 227               |       |        |
| WP-11    | 3.00                   |                             | 6.09  | 11.95               | 958                           | 62                      | 224               |       |        |
| WP-12    | 4.06                   |                             | 6.35  | 11.74               | 10.44                         | 39                      | 221               |       |        |
| WP-13    | 2,36                   |                             | 6.74  | 11.78               | 7.93                          | 49                      | 221               |       |        |
| WP-14    | 2.69                   |                             | 8.66  | 11.33               | 7.01                          | 51                      | 167               |       |        |
| WP-15    | 3.15                   |                             | 6.22  | 11.29               | 10.72                         | 42                      | 219               |       |        |
| WP-16R   | 4.13                   |                             | 10.03 | 11,24               | 10.39                         | 269                     | /23               |       |        |
| WP-17R   | 4.11                   | _                           | 5.78  | 10.05               | 8.16                          | 105                     | 233<br>5.786      | ų,    |        |
| WP-18R   | 2.41                   |                             | 9.21  | 11,29               | 11.63                         | 134                     | 136               |       |        |
| WP-20    | 3, 20                  |                             | 6.17  | 11.30               | 9.97                          | 68                      | 233               |       |        |
| WP-21    | 6.31                   | _                           | 9.70  | 10.60               | 9.10                          | 34                      | 121               |       |        |
| WP-22    | 4.18                   |                             | 10.33 | 10.68               | 7.01                          | 485                     | 95                |       |        |

EA 5120 0794-7

5/5/10/98

This page entered as

Page 1 of 2

This page entered as

FUELFM 98 JANI-JUNI

SUM-T3-2.JUNI

SUM-T3-1.JUNI



| EA Personnel: RH /BP         | Date: 7 May 98                 | Time: 0700-130 |
|------------------------------|--------------------------------|----------------|
| Weather: Rain Heavy at fines | Equipment: YSI 610D / Solinisi | + 121          |

| Location | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | рН   | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivit<br>y (µhmos) | Redox<br>(mV) | Bottom |
|----------|------------------------|-----------------------------|------|---------------------|-------------------------------|--------------------------|---------------|--------|
| MW X     | 290                    | _                           | 7.08 | 10.91               | 1028                          | 68                       | 216           |        |
| MW       | 3.35                   | 1                           | 5.17 | 11.86               | 10,59                         | 93                       | 242           |        |
| mw44 🦓   | 1.66                   |                             | 6.28 | 7.45                | 7.27                          | 47                       | 183           |        |
| wall X   | 4.26                   |                             | 6.22 | 10.42               | 11.34                         | 153                      | 23/           |        |
| MY 3     | 3.30                   |                             | 6-58 | 11.70               | 10.71                         | 35                       | 207           |        |
| MU 3     | (2.95                  | ~                           | 656  | Q.56                | 11.10                         | 27                       | 200           |        |
| m49      | 4.07                   |                             | 5.79 | 7.27                | 1.63                          | 54                       | 222           |        |
| My V     | 5.50                   |                             | 5.98 | 8.15                | 1.02                          | 49                       | 220           |        |
| mw X     | 7.59                   | -                           | 6.19 | 7.24                | 9.92                          | 60                       | 235           |        |
|          |                        |                             |      |                     |                               |                          |               |        |
|          |                        |                             |      |                     |                               |                          |               |        |
|          |                        |                             |      |                     |                               |                          |               |        |
|          |                        |                             |      |                     |                               |                          |               |        |
|          |                        |                             |      |                     |                               |                          |               |        |
|          |                        |                             |      |                     |                               |                          |               |        |
|          |                        |                             |      |                     |                               |                          |               |        |
|          |                        |                             |      |                     |                               |                          |               |        |
|          |                        |                             |      |                     |                               |                          |               |        |
|          |                        |                             |      |                     |                               |                          |               |        |
| Comments | s:                     |                             |      |                     |                               |                          |               |        |
|          |                        |                             |      |                     |                               |                          |               |        |
|          |                        |                             |      |                     |                               |                          |               |        |
|          |                        |                             |      |                     |                               |                          |               |        |



| EA Personnel:         | Date: 5 / 21/98                  | Time: 0730 |
|-----------------------|----------------------------------|------------|
| Weather: CLEAR 170° F | Equipment: JNTERFACE PROBE-SOUNT | 9A-90      |

|          | Location | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | pН          | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity (µhmos) | Redox<br>(mV) | Riser | Bottom |
|----------|----------|------------------------|-----------------------------|-------------|---------------------|-------------------------------|----------------------|---------------|-------|--------|
|          | WP-1     | 4,43                   |                             | 5:76        | 10.60               | 0.41                          | 284                  | 160           |       |        |
|          | WP-2     | 5,37                   |                             | 6,3         | 11./3               | 0.79                          | 148                  | 161           |       |        |
|          | WP-3     | 3.72                   |                             | 5,5)        | 12:16               | 1.13                          | 48                   | 195           |       |        |
| İ        | WP-4     | 4,82                   |                             | 5.88        | 10,29               | ०,६८                          | 138                  | 191           |       |        |
|          | WP-5     | 5.20                   |                             | 5.50        | 8.98                | 0.77                          | 70                   | 178           |       |        |
|          | WP-6     | 4.21                   |                             | 350         | ধ.38                | 0.43                          | 51                   | 174           |       |        |
| l        | WP-7     | 4.63                   |                             | 5:74        | 15,06               | 48.0                          | ŽÝ ô                 | 179           |       |        |
|          | WP-8     | 2,03                   | -                           | 6.02        | 10.38               | 0.57                          | 300                  | 173           |       |        |
|          | - WP-9   | 4,78                   |                             | 5,99        | 11.27               | 4.45                          | 138                  | 183           |       |        |
| تخ       | WP-10    | 4.68                   |                             | 6,54        | 8:70                | 150                           | 60                   | रुख           |       |        |
| į        | WP-11    | 4,98                   | }                           | 5.94        | 10.18               | ुर्                           | 107                  | 154           |       |        |
|          | WP-12    | 6,17                   | _                           | 5,7/        | p,40                | 0,40                          | 127                  | 198           |       |        |
|          | WP-13    | 4.46                   |                             | 645         | 10.97               | 0.58                          | 63                   | 167           |       |        |
| 1        | WP-14    | ₹.3€                   |                             | 5.67        | 10.70               | 0.80                          | 104                  | 212           |       |        |
|          | WP-15    | 2,25                   |                             | 6.04        | 11.31               | 9.47                          | 54                   | 170           |       |        |
| 4        | WP-16R   | 5.54                   |                             | 9.5¥        | 12/13               | 1.37                          | 344                  | 64            |       |        |
| $\dashv$ | WP-17R   | 6,27                   | SHEEN                       | <b>૭</b> ૩8 | 13,54               | 7435.08                       | 143                  | 77            |       |        |
|          | WP-18R   | 2:37                   |                             | 6,62        | 16,12               | 9.74                          | 168                  | 176           |       |        |
| į        | WP-20    | 5,09                   |                             | 6506        | 12,01               | 3.12                          | 392                  | 184           |       |        |
|          | WP-21    | 5,64                   |                             | 6.10        | 12218               | 2,92                          | 146                  | 185           |       |        |
| $\dashv$ | WP-22    | 6.00                   | SHEEN.                      | 11.40       | 15.50               | 3,07                          | 1067                 | -34           |       |        |





| EA Personnel:                | Date: 5/2-/98                   | Time: /49 @ |
|------------------------------|---------------------------------|-------------|
| Weather: CLEAR, 70°F, BR5621 | Equipment: INTEXFACT PROBE-50UM | st,         |

| Location | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | pН          | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity (µhmos) | Redox<br>(mV) | Riser    | Bottom       |
|----------|------------------------|-----------------------------|-------------|---------------------|-------------------------------|----------------------|---------------|----------|--------------|
| MW-21)   | 6,12                   |                             | ૯.૩૮        | 9.77                | 1.24                          | 63                   | 187           |          |              |
| MW- 213" | 14.58                  |                             | 6,23        | 1/.39               | 7.83                          | 33                   | 188           |          |              |
| MW-51    | 4.05                   |                             | <b>હ</b> ્0 | 7.88                | 1.34                          | 53                   | 198           |          |              |
| MW-49    |                        |                             | 5.93        |                     | /20                           | 64                   | 211           |          |              |
| Mu-58    | 5.84                   |                             | 5,84        | 7.96                | 0.74                          | 51                   | 198           |          |              |
| 4m-4e    | 4.14                   |                             | 6.01        | 8.46                | *****************             | 2/3                  | <i>2</i> 02   |          | ļ            |
| MW-61R   |                        | <del></del>                 | 7.1         | 15-17               | 8.31                          | 103                  | 169,5         |          | ļ            |
| MW-44    | 7.81                   |                             | 6.8         | 11.19               | 1,40                          | 47                   | 18001         |          |              |
| MH62:    |                        |                             | 7.28        | 10,228.76           | 1.80                          | 80                   | 164.3         |          | <u> </u>     |
| MW-54.   | L                      |                             | 4.88        | 8,80                | 3.14                          | 85                   | 245           |          |              |
| MM-43    | 6.18                   |                             | 5:74        | 12.01               | 1.07                          | 2                    | 197           |          |              |
| M-26.    | - OBS                  | TKVCTIO                     | 7 1         | r nece              |                               |                      |               |          | <u> </u>     |
| ·        |                        |                             |             |                     |                               |                      |               |          | <u> </u>     |
|          |                        |                             |             |                     |                               |                      |               |          |              |
|          |                        |                             |             |                     |                               |                      |               |          |              |
|          |                        | ļ                           |             |                     |                               |                      |               |          | <del> </del> |
|          |                        |                             |             |                     |                               |                      |               | <u> </u> | <u> </u>     |
|          |                        |                             |             |                     |                               |                      |               |          |              |
|          |                        |                             |             |                     |                               |                      |               |          | <u> </u>     |
|          |                        |                             |             |                     |                               |                      |               | ļ        | <u> </u>     |
|          |                        |                             |             |                     |                               |                      |               |          | <u> </u>     |
|          |                        |                             |             | L                   | <u> </u>                      | <u> </u>             |               |          |              |
| Comments | s: Found               | BLOWER                      | C-2         | OFF. TRIS           | DTO TUR                       | 'N 0 M'              |               |          |              |



| EA Personnel: Brian Anduen | Date: 6/9  | 198  |         | Time: | 1000 - |
|----------------------------|------------|------|---------|-------|--------|
| Weather: GARTIZ Claudy     | Equipment: | YSI/ | Solinst |       |        |

|          |                        | Depth to        |       |                     | Dissolved        |                      |               |       |        |
|----------|------------------------|-----------------|-------|---------------------|------------------|----------------------|---------------|-------|--------|
| Location | Depth to<br>Water (ft) | Product<br>(ft) | рН    | Temperature<br>(°C) | Oxygen<br>(mg/L) | Conductivity (µhmos) | Redox<br>(mV) | Riser | Bottom |
| WP-1     | 4.69                   |                 | 5.69  | 14.18               | 1.01             | 393                  | -4            |       |        |
| WP-2     | 5,66                   |                 | 5.19  | 13.66               | 1.83             | 156                  | 27            |       |        |
| WP-3     | 4.35                   |                 | 5.64  | 13.94               | 4.58             | 56                   | 90            |       |        |
| WP-4     | 7.82                   |                 | 5.86  | 12.73               | 0.51             | 193                  | -2            |       |        |
| WP-5     | 5.52                   |                 | 5.76  | 11.61               | 2.05             | 91                   | 35            |       |        |
| WP-6     | 4.65                   |                 | 5.60  | 11.27               | 1.83             | 82                   | 68            |       |        |
| WP-7     | 5.07                   |                 | 5.74  | 12.51               | 1.48             | 250                  | -19           |       |        |
| WP-8     | 5.67                   |                 | 5.90  | 13.36               | 2.33             | 382                  | 90            |       |        |
| WP-9     | 6.35                   |                 | 5.88  | 13.13               | 4.67             | 212                  | 82            |       |        |
| WP-10    | 5.47                   |                 | 5.31  | 10.13               | 2.73             | 78                   | 181           |       |        |
| WP-11    | 5.45                   |                 | 5,75  | 12.76               | 0.62             | 144                  | -13           |       |        |
| WP-12    | 7.35                   |                 | 5,73  | 13.35               | 4.01             | 69141                | 73            |       |        |
| WP-13    | 5.81                   |                 | 617   | 13.50               | 3.58             | 74                   | 67            |       |        |
| WP-14    | 6.07                   |                 | 5,78  | 12.40               | 337              | 146                  | 170           |       |        |
| WP-15    | 5.93                   |                 | 5,77  | 12.70               | 8.66             | 73                   | 109           |       |        |
| WP-16R   | 7.28                   |                 | 6.41  | 14.10               | 3.86             | 465                  | 100           |       |        |
| WP-17R   | 760                    |                 | 597   | 1571                | 6.63             | 81                   | 122           |       |        |
| WP-18R   | 6.18                   |                 | 7.13  | 16.28               | 9.90             | 202                  |               |       |        |
| WP-20    | Destro                 | yed -           | Bro   | Ken.                |                  |                      |               |       |        |
| WP-21    | 6.33                   | <b>-</b>        | 7.50  | 12,56               | 3.76             | 186                  | -92           |       |        |
| WP-22    | 6.73                   |                 | 11.24 | 12.95               | 2.77             | 1292                 | -68           |       |        |

EA 5120 0794<sub>2</sub>7



| EA Personnel: BA            | Date: 6/9  | 198      | Time: /600 |
|-----------------------------|------------|----------|------------|
| Weather: patty cloudy, vain | Equipment: | 4SI 610D |            |

| Location | Depth to Water (ft) | Depth to<br>Product<br>(ft)           | pН       | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity $(\mu h mos)$ | Redox<br>(mV) | Riser                                            | Bottom       |
|----------|---------------------|---------------------------------------|----------|---------------------|-------------------------------|----------------------------|---------------|--------------------------------------------------|--------------|
| MW54     | 6.32                | _                                     | 6.54     | 13.03               | 6.49                          | 120                        | 257           |                                                  |              |
| MUGIE!   | 4.81                |                                       | 5.83     | 14.34               | 2.53                          | 117                        | 157           |                                                  |              |
| MW-44    | 3.55                |                                       | 6.13     | 14.11               | 4.04                          | 60                         | 59            |                                                  |              |
| MW-56    | SPAR                | 01116-                                |          |                     |                               |                            |               |                                                  | ]<br>        |
| MW-211   | 7.19                | -                                     | 6.04     | 11.07               | 1,44                          | 152                        | -15           |                                                  |              |
| mw-213'  | 5.75                |                                       | 6,44     | 14,10               | 9.06                          | 45                         | 33            |                                                  | <u> </u>     |
| MW-49    |                     |                                       | 5.68     | 10.65               | 1.81                          | 92                         | 120           |                                                  |              |
| miv 58?  | 6.10                |                                       | 6.10     | 10.85               | 3.76                          | 60                         | 59            |                                                  |              |
| mw-51    | 4.73                |                                       | 6,36     | 12.61               | 9.63                          | 4/                         | 97            |                                                  |              |
| NW-43    | DRY-                |                                       |          |                     |                               | L                          |               | ļ                                                |              |
| muz >    | 8.92                |                                       | 8.40     | 891                 | 9.89                          | 43                         | 65            |                                                  |              |
|          |                     |                                       | ļ        |                     |                               |                            |               | <b></b>                                          |              |
|          |                     | · · · · · · · · · · · · · · · · · · · |          | <del></del>         |                               |                            |               |                                                  | <b></b>      |
|          |                     |                                       |          | <del></del>         |                               |                            | <del> </del>  | <u> </u>                                         | <b>_</b>     |
|          |                     |                                       |          | <del></del>         |                               |                            | -             | <u> </u>                                         |              |
|          |                     |                                       |          | i                   |                               |                            |               | ļ                                                | <b></b>      |
|          |                     |                                       |          |                     |                               | ·<br>                      | <del> </del>  |                                                  | <del> </del> |
|          |                     | <del></del>                           |          |                     |                               | <br>                       |               |                                                  | ļ. <u></u>   |
|          |                     |                                       |          |                     |                               |                            | -             | <del> </del>                                     | <del> </del> |
|          |                     |                                       |          |                     |                               |                            |               | <del>                                     </del> |              |
| <b> </b> |                     | <del></del>                           |          | <u></u>             |                               |                            | <del> </del>  | <del> </del>                                     | <del> </del> |
|          | <u> </u>            |                                       | لــــــا | <del>-</del>        | <u> </u>                      |                            | <u> </u>      | <u> </u>                                         | 1            |
| Comments | :                   |                                       |          |                     |                               |                            |               |                                                  |              |



| EA Personnel: BDA    | Date: 61698    | Time: |
|----------------------|----------------|-------|
| Weather: Cloudy Rain | Equipment: YST |       |
|                      | <del></del>    |       |

| Location             | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | pН    | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity (µhmos) | Redox<br>(mV) | Bottom   |
|----------------------|------------------------|-----------------------------|-------|---------------------|-------------------------------|----------------------|---------------|----------|
| WP-1                 | 328                    |                             | 6.80  | 15,45               | 2,60                          | 137                  | 212           |          |
| WP-2                 | 4.02                   |                             | 6.86  | 16.06               | 3,62                          | 65                   | 172           |          |
| WP-3                 | 2.96                   |                             | 6,88  | 15,50               | 4.73                          | 50                   | 174           |          |
| WP-4                 | 2,49                   |                             | 6.61  | 16.01               | 3,41                          | 60                   | 122           |          |
| WP-5                 | 3,71                   |                             | 6,90  | 16.21               | 6.88                          | 36                   | 169           |          |
| WP-6                 | 2.35                   |                             | 6.85  | 15,49               | 4.27                          | 25                   | 175           |          |
| WP-7                 | 3,00                   |                             | 6.65  | 14.33               | 3,45                          | 123                  | 175           |          |
| WP-8                 | 3,03                   |                             | 6,55  | 13,84               | 1,96                          | 221                  | 146           |          |
| WP-9                 | 3.05                   |                             | 6.48  | 15,97               | 8,24                          | 113                  | 127           |          |
| WP-10                | 1.68                   |                             | 691   | 16.34               | 5,49                          | 31                   | 254           | <u>-</u> |
| WP-11                | 2,99                   |                             | 6.75  | 15,75               | 2,23                          | 69                   | 189           |          |
| WP-12                | 4.3                    |                             | 6,29  | 15, 78              | 3.27                          | 108                  | 126           |          |
| WP-13                |                        | Bent                        | over  |                     |                               |                      |               |          |
| WP-14                | 2.82                   |                             | 6.95  | 16.23               | 6.82                          | 56                   | 257           |          |
| WP-15                | 3.16                   |                             | 6.89  | 15.05               | 9.31                          | 47                   | 181           |          |
| WP-16R               | 4,02                   |                             | 8,81  | 11.87               | 2.53                          | 391                  | 60            |          |
| WP-17R               | 4.80                   |                             | 6,53  | 12.37               | 2.84                          | 140                  | 28            |          |
| WP-18R               | 2,35                   |                             | 6,54  | 14,07               | 10,6)                         | 156                  | 195           |          |
| WP-20                |                        | Des-                        | rove  | <u>d</u> —          |                               |                      |               |          |
| WP-21                | 4.96                   |                             | 6,08  | 12.60               | 25                            | 101                  | 1310          |          |
| WP-22<br>FA 5120 079 | 3.89                   |                             | 11.25 | 12,61               | 3,00                          | 104                  | 1-51          |          |



| EA Personnel: BDH     | Date: 616198        | Time: |
|-----------------------|---------------------|-------|
| Weather: Cloudy humid | Equipment: YST 6000 |       |

| Location | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | рН          | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivit<br>y (µhmos) | Redox<br>(mV) | Bottom |
|----------|------------------------|-----------------------------|-------------|---------------------|-------------------------------|--------------------------|---------------|--------|
| mw54     | 3.05                   |                             | 6,96        | 15.84               | 5,33                          | 104                      | 261           |        |
| MWGR     | 3.37                   |                             | 7.10        | 16,06               | 6.74                          | 109                      | 252           |        |
| mw44     | 1,78                   |                             | 6.96        | 15.75               | 5.54                          | 54                       | 165           |        |
| MW211    | 3.89                   |                             | 6.44        | 15.87               | 2.47                          | 109                      | 135           |        |
| mw213    | 4.01                   |                             | 6.87        | 15.34               | 8,21                          | 40                       | 119           |        |
| mw51     | 3.15                   |                             | 7.10        | 13.4                | 9.26                          | 40                       | 134           |        |
| mw49     | 4,60                   |                             | 669         | 12.72               | 3.77                          | 71                       | 154           |        |
| mw58     | 5.55                   |                             | 6,63        | 11.40               | 5,28                          | 52                       | 159           |        |
| mw43     | 4.05                   |                             | 6,61        | 15,49               | 9.82                          | 29                       | 163           |        |
| mm pg    | 7,71                   |                             | 700         | 8.57                | 320                           | 65                       | 189           |        |
|          |                        |                             |             |                     |                               |                          |               |        |
|          |                        |                             |             |                     |                               |                          |               |        |
|          |                        |                             |             |                     |                               |                          |               |        |
|          |                        |                             |             |                     | <u> </u>                      |                          |               |        |
|          |                        | <br>                        |             |                     |                               |                          |               |        |
|          |                        |                             |             |                     |                               | \                        | <u> </u>      |        |
|          |                        |                             |             |                     |                               |                          | -             |        |
|          |                        |                             |             |                     |                               |                          |               |        |
|          |                        |                             | L           |                     | 1                             | <u> </u>                 | 1             | l      |
| Comments | <b>::</b>              |                             |             |                     |                               |                          |               |        |
|          |                        |                             |             |                     |                               |                          |               | ,      |
|          |                        |                             |             |                     |                               |                          |               |        |
|          |                        |                             | <del></del> |                     |                               |                          |               |        |



| EA Personnel: SYC, RH        | Date: 6130/98                    | Time:   |
|------------------------------|----------------------------------|---------|
| Weather: 65° overtast, humid | Equipment: YSI-1000YL, interface | meter . |

|          |                        | <del> </del>                | T     |                     |                         |                      |               |       |        |
|----------|------------------------|-----------------------------|-------|---------------------|-------------------------|----------------------|---------------|-------|--------|
| Location | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | рН    | Temperature<br>(°C) | Dissolved Oxygen (mg/L) | Conductivity (µhmos) | Redox<br>(mV) | Riser | Bottom |
| Location |                        | (11)                        |       |                     |                         |                      |               | Kisti | Dollom |
| WP-1     | 3.59                   |                             | 621   | 18,51               | 5,42                    | 181                  | 136           |       |        |
| WP-2     | 4.63                   | ~                           | 6.02  | 17.05               | 4.05                    | 208                  | 121           |       |        |
| WP-3     | 3.09                   | }                           | 6.15  | 15.64               | 3.20                    | 61                   | 105           |       |        |
| WP-4     | 3.89                   |                             | 6,25  | 18.35               | 3.98                    | 122                  | 107           |       |        |
| WP-5     | 4.75                   |                             | 6.34  | 14.18               | 3,54                    | 64                   | 186           |       |        |
| WP-6     | 351                    | 1                           | 6.41  | 14.20               | 4.20                    | 39                   | 89            |       |        |
| WP-7     | 3.73                   |                             | 6.09  | 17.90               | 2.90                    | 204                  | 112           |       |        |
| WP-8     | 3.79                   |                             | 6,02  | 16.91               | 2.22                    | 293                  | 114           |       |        |
| WP-9     | 3 70                   |                             | 6.24  | 16.58               | 5,36                    | 147                  | 112           |       |        |
| WP-10    | 3.65                   |                             | 6.82  | 18.08               | 5.70                    | 40                   | 187           |       |        |
| WP-11    | 424                    |                             | 6.08  | 17.30               | 5./3                    | 129                  | 116           |       |        |
| WP-12    | 4.92                   | 1                           | 5.86  | 16.96               | 3.15                    | 174                  | 145           |       |        |
| WP-13    | destr                  | oyed                        |       |                     |                         |                      |               |       |        |
| WP-14    | 4.44                   | 4                           | 6,96  | 7.35                | 5,33                    | 72                   | 183           |       |        |
| WP-15    | 4.41                   |                             | 6.36  | 16,58               | 9.62                    | 41                   | 98            |       |        |
| WP-16R   | 1,26                   |                             | 8.90  | 14.12               | 6.64                    | 432                  | 83            |       |        |
| WP-17R   | 5.18                   |                             | 6.08  | 13.79               | 8,69                    | 178                  | 176           |       |        |
| WP-18R   | 4.49                   |                             | 6764  | 7 11.87             | 9.47                    | 166                  | -72           |       |        |
| WP-20    | dest                   |                             |       |                     |                         |                      |               |       |        |
| WP-21    | 4,85                   | 4                           | 847   | 13.90               | 655                     | 209                  | -140          |       |        |
| WP-22    | 4.68                   | 5 teen                      | 10.43 | 14.30               | 4.96                    | 1080                 | 296           |       |        |



| EA Personnel: RH SYC   | Date: 6/30/98                | Time: |
|------------------------|------------------------------|-------|
| Weather: Oversast, 65° | Equipment: inleyae meter 1/5 | I-600 |

| Location | Depth to<br>Water (ft) | Depth to<br>Product<br>(ft) | рН   | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Conductivity (µhmos) | Redox<br>(mV) | Riser    | Bottom |
|----------|------------------------|-----------------------------|------|---------------------|-------------------------------|----------------------|---------------|----------|--------|
| MW-54    | 4.57                   |                             | 7.54 | 16.43               | 6.14                          | 87                   | 168           |          |        |
| 61R      | 3.87                   |                             | 6:38 | 17.71               | 4.59                          | 117                  | 145           |          |        |
| 62       | 797                    |                             | 6.37 | 8.81                | 4.07                          | フス                   | 142           |          |        |
| 44       | 2.07                   |                             | 6.61 | 16.47               | 6.59                          | 58                   | 79            |          |        |
| 43       | 5,51                   | ·~                          | 6,26 | 17.34               | 8.92                          | 39                   | /33           |          |        |
| 58       | 5,74                   | -                           | 6.95 | 13.96               | 5.85                          | 52                   | 121           |          |        |
| 211      | 4.95                   |                             | 9.40 | 17.26               | 4,14                          | 132                  | 66            |          |        |
| 213      | 4,18                   |                             | 6.53 | 14.73               | 7.72                          | 43                   | 105           |          |        |
| 49       | 5.50                   |                             | 6.11 | 14.17               | 5.82                          | 101                  | 164           |          |        |
| Si       | 345                    |                             | 6.18 | 14.91               | 7,00                          | 56                   | 129           |          |        |
|          |                        |                             |      |                     | <u> </u>                      |                      |               |          |        |
|          |                        |                             |      |                     |                               |                      |               |          |        |
|          |                        |                             |      | · .                 | <del></del>                   |                      |               |          |        |
|          |                        |                             |      |                     |                               |                      |               |          |        |
|          |                        |                             |      |                     |                               |                      |               |          |        |
|          |                        |                             |      |                     |                               |                      |               |          |        |
|          |                        |                             |      |                     |                               |                      |               | <u> </u> |        |
|          |                        |                             |      |                     |                               |                      | <u> </u>      |          |        |
|          |                        |                             |      |                     |                               |                      |               |          |        |
|          |                        |                             |      |                     |                               |                      |               |          |        |
|          |                        |                             |      |                     | <u> </u>                      |                      |               |          |        |
|          |                        |                             |      |                     | <u></u>                       |                      |               | <u> </u> |        |
| Comments | :                      |                             |      |                     |                               |                      |               |          |        |

#### Appendix B

**Field Record of Biosparging Well Point Monitoring Forms** 



## FIELD RECORD OF BIOSPARGING WELL POINT MONITORING Biosparging System, Old Navy Fuel Farm, Naval Air Station, Brunswick Maine

| EA Personnel: B Anderser | Date: //22/9\$       | Time:     |
|--------------------------|----------------------|-----------|
| Weather: (lien cold      | Instrument(s): (A 90 | TUA-1000. |

| Location | FID TVH<br>(ppm <sub>v</sub> ) | PID TVH<br>(ppm <sub>v</sub> ) | CH₄ | CO <sub>2</sub> | O <sub>2</sub> | Comments |
|----------|--------------------------------|--------------------------------|-----|-----------------|----------------|----------|
| WP-1     | 28                             | 0.1                            | 0   | 0               | 21.5           |          |
| WP-2     | 2360                           | 242                            | . 3 | 12              | 21.0           |          |
| WP-3     | 54,0                           | 14,0                           | 0   | ,9              | 21.1           |          |
| WP-4     | 426                            | 102                            | O   | 0               | 21.4           |          |
| WP-5     | 2.75                           | ٠,2                            | . 6 | 08              | R.5            |          |
| WP-6     | 38.6                           | 1.6                            | 0   | 13              | ×1.3           |          |
| WP-7     | 22.7                           | 5.8                            | 0   | 0               | 21.5           |          |
| WP-8     | 11.4                           | 0.6                            | Ø   | 1               | 21.0           |          |
| WP-9     | 0                              | 1.6                            | 0   | 0               | 21.2           |          |
| WP-10    | 0                              | 0                              | ۱۵  | 0               | 21.5           |          |
| WP-11    | 13.2                           | 2.4                            | ()  | O               | 21,5           |          |
| WP-12    | 0                              | 0.2                            | 0   | 12              | 20.4           |          |
| WP-13    | 0                              | Jet.                           | O   | 0               | 21.2           |          |
| WP-14    | 0                              | 0.1                            | 0   | Ò               | 21.5           |          |
| WP-15    | 0                              | 0                              | 0   | 0               | 21.5           |          |
| WP-16R   | Ó                              | 0                              | 0   | 0               | 21.5           |          |
| WP-17R   | 0                              | 0                              | D   | 0               | 21,5           |          |
| WP-18R   | 0                              | 0                              | 0   | 0               | 21.5           |          |
| WP-20    | 0                              | 0                              | 0   | 43-             | 20.9           |          |
| WP-21    | 0                              | 0                              | 0   | 0               | 21.5           |          |
| WP-22    | 0                              | 0                              | 0   | $\mathcal{O}$   | 21.5           |          |

EA 5120 0794-4

12 0 21.5

Page 1 of 2



#### FIELD RECORD OF BIOSPARGING WELL POINT MONITORING Biosparging System, Old Navy Fuel Farm, Naval Air Station, Brunswick Maine

| EA Personnel: /7 D C         | Date: 2/15-198           | Time:   |
|------------------------------|--------------------------|---------|
| Weather: SURMY 70F 2017PHWIM | Instrument(s): 6A-90, To | 1A-1000 |

| Location | FID TVH<br>(ppm <sub>v</sub> ) | PID TVH<br>(ppm <sub>v</sub> ) | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | Comments |
|----------|--------------------------------|--------------------------------|-----------------|-----------------|----------------|----------|
| WP-1     | 0                              | 0                              | 0               | 0               | 21.1           |          |
| WP-2     | 650                            | 74                             | 0.4             | 0.8             | 19.9           |          |
| WP-3     | 30                             | 2                              | 0.1             | 0.2             | 20.6           |          |
| WP-4     | 3 /                            | 1                              | 0.1             | 0               | 20.6           |          |
| WP-5     | O                              | 0                              | 0               | 0               | 21.5           |          |
| WP-6     | O                              | 0                              | 0.1             | 0               | 20.9           |          |
| WP-7     | 102                            | 2.5                            | 0.2             | 0               | 20.8           |          |
| WP-8     | 0                              | 0                              | 0.1             | 0               | 205            |          |
| WP-9     | 0                              | O                              | 0.1             | 0               | 20.6           |          |
| WP-10    | 50                             |                                | 0               | 0.1             | 21.2           |          |
| WP-11    | 600                            | 55                             | 0.7             | 0               | 19.8           |          |
| WP-12    | 52                             | 5                              | 0.1             | 0.1             | 20.0           |          |
| WP-13    | CAN                            | rot C                          | DREN            |                 |                |          |
| WP-14    | 0                              | 0                              | 0               | 0               | 20.1           |          |
| WP-15    | 0                              | 0                              | 0.1             | 0.1             | 19.8           |          |
| WP-16R   | 0                              | 0                              | 0               | 0               | 2.1.5          |          |
| WP-17R   | 0                              | 0                              | 0               | 0               | 21.5           |          |
| WP-18R   | 0                              | 0                              | 0               | 0               | 21.5           |          |
| WP-12    | $\times$                       | $\times$                       | $\times$        | X               | $\times$       |          |
| WP-20    | O                              | 0                              | 0.1             | 0.0             | 20.1           |          |
| WP-21    | 0                              | 0                              | 0               | 0               | 21.5           |          |
| WP-22    | 0                              | 0                              | 0               | 0               | 21.5           |          |

EA 5120 0794-4 Page 1 of 1



### FIELD RECORD OF BIOSPARGING WELL POINT MONITORING Biosparging System, Old Navy Fuel Farm, Naval Air Station, Brunswick Maine

| EA Personnel: KR, SAP | Date: 3/13/98            | Time: 900 |
|-----------------------|--------------------------|-----------|
| Weather: Sunny, 40°   | Instrument(s): TVA, Land | tec       |

| Location | FID TVH<br>(ppm <sub>v</sub> ) | PID TVH<br>(ppm <sub>v</sub> ) | CH₄ | CO <sub>2</sub> | O <sub>2</sub> | Comments |
|----------|--------------------------------|--------------------------------|-----|-----------------|----------------|----------|
| WP-1     | 8.44                           | 2,54                           | 0   | Ó               | 21.3           |          |
| WP-2     | 576                            | 209                            | O   | 0               | 21.3           |          |
| WP-3     | 3.98                           | 2.10                           | 0   | 0.3             | 21.0           |          |
| WP-4     | 1.140                          | 82.87                          | 0   | 0               | 21.3           |          |
| WP-5     | 9.61                           | 4.04                           | 0   | 0               | 21,3           |          |
| WP-6     | 10                             | 5,60                           | 0   | 0               | 21,2           |          |
| WP-7     | 55,54                          | 14.89                          | 0   | 0               | 21.2           |          |
| WP-8     | 868                            | 5 31                           | 0   | 0               | 21,3           |          |
| WP-9     | 0.81                           | -0.48                          | 0   | 0               | 21.3           |          |
| WP-10_   | 1,98                           | 0.87                           | 0   | 0               | 21.3           |          |
| WP-11    | Q 1.90                         | -0,30 b                        | O   | 0               | 21.3           |          |
| WP-12    | 3.50                           | i.                             | O   | 0               | 21.2           |          |
| WP-13    | 1.00                           | -0.66                          | 0   | Ü               | 21.3           |          |
| WP-14    | 1.83                           | 0.89                           | Ÿ   | O               | 21, 3          |          |
| WP-15    | 0.83                           | -0.37 b                        | 0   | Ċ               | 21, 3          |          |
| WP-16R   | 0,92                           | ~ U,70°                        | 0   | 0               | 21. 3          |          |
| WP-17R   | 0.95                           | -0.776                         | 40  | 0               | 31.3<br>21.3   |          |
| WP-18R   | 0.71                           | -0.45b                         | 0   | 0               | 27,3           |          |
| WP-20    | 1, 22                          | -0.46                          | 0   | ŭ               | 21.3           |          |
| WP-21    | 2.07                           | 0.61                           | 0   | U               | Gi.3           |          |
| WP-22    | 5.26                           | 2,45                           | O   | 0               | 21.3           |          |

EA 5120 0794-4

B-NEGATIVE READING RECORDED IS NORMAL DEFLECTION OF METER BELOW
ZERO. CORRECT LEVEL IS ZERO.



### FIELD RECORD OF BIOSPARGING WELL POINT MONITORING Biosparging System, Old Navy Fuel Farm, Naval Air Station, Brunswick Maine

| EA Personnel: 17. CHASE | Date: 4125198           | Time: |
|-------------------------|-------------------------|-------|
| Weather: BAIN           | Instrument(s): TVA 1000 | 6A 90 |

| Location | FID TVH<br>(ppm <sub>v</sub> ) | PID TVH<br>(ppm <sub>y</sub> ) | CH₄ | CO <sub>2</sub> | O <sub>2</sub> | Comments                |
|----------|--------------------------------|--------------------------------|-----|-----------------|----------------|-------------------------|
| WP-1     | 0                              | O                              | 0   | 0               | 21.0           |                         |
| WP-2     | 222                            | 60                             | 0   | 0.2             | 20,9           |                         |
| WP-3     | 10                             |                                | 0   | 0.7             | 20.8           |                         |
| WP-4     |                                |                                |     |                 |                | RAIN READINGS CYRTAILED |
| WP-5     | 30                             | 4                              | 0   | 0               | 21.1           |                         |
| WP-6     | 4                              |                                | 0   | 0.1             | 21.0           |                         |
| WP-7     | 2438                           | 38                             | ७५  | 0.1             | 2019           |                         |
| WP-8     |                                |                                |     |                 |                | RASN BEADINGS CURTARED  |
| WP-9     |                                |                                |     |                 |                | // // //                |
| WP-10    | 0                              | 0                              | 0   | 0               | 21.1           |                         |
| WP-11    |                                |                                |     |                 |                | RAIN RÉADIN GS CURTARED |
| WP-12    |                                |                                |     |                 |                |                         |
| WP-13    |                                |                                |     |                 |                |                         |
| WP-14    |                                |                                |     |                 |                |                         |
| WP-15    |                                |                                |     | ļ               |                |                         |
| WP-16R   |                                |                                |     |                 |                |                         |
| WP-17R   |                                |                                |     |                 |                |                         |
| WP-18R   |                                |                                |     |                 |                |                         |
| WP-20    |                                |                                |     |                 |                |                         |
| WP-21    |                                |                                |     |                 |                |                         |
| WP-22    |                                |                                |     |                 | <u></u>        | <u> </u>                |

EA 5120 0794-4

Stopped taking readings because it Started to rain Page 1 of 2



#### FIELD RECORD OF BIOSPARGING WELL POINT MONITORING Biosparging System, Old Navy Fuel Farm, Naval Air Station, Brunswick Maine

| EA Personnel: RH. BA | Date: 7 M M y 98        | Time: |
|----------------------|-------------------------|-------|
| Weather: HEAVY BAIN  | Instrument(s): TVA 1000 | 16A90 |

| F        |                                |                                |     | <del></del>     |                |                              |
|----------|--------------------------------|--------------------------------|-----|-----------------|----------------|------------------------------|
| Location | FID TVH<br>(ppm <sub>v</sub> ) | PID TVH<br>(ppm <sub>v</sub> ) | CH₄ | CO <sub>2</sub> | O <sub>2</sub> | Comments                     |
| WP-1     |                                |                                |     |                 |                | HEAVY RAIN                   |
| WP-2     |                                |                                |     |                 |                | MEANY RAIN NO READINGS TAKEN |
| WP-3     |                                |                                |     |                 |                |                              |
| WP-4     |                                |                                |     |                 |                |                              |
| WP-5     |                                |                                |     |                 |                |                              |
| WP-6     |                                |                                |     |                 |                |                              |
| WP-7     |                                |                                |     |                 |                |                              |
| WP-8     |                                |                                |     |                 |                |                              |
| WP-9     |                                |                                |     |                 |                |                              |
| WP-10    |                                |                                |     |                 |                |                              |
| WP-11    |                                |                                |     |                 |                |                              |
| WP-12    |                                |                                |     |                 |                |                              |
| WP-13    |                                |                                |     |                 |                |                              |
| WP-14    |                                |                                |     |                 |                |                              |
| WP-15    |                                |                                |     |                 |                |                              |
| WP-16R   |                                |                                |     |                 |                |                              |
| WP-17R   |                                |                                |     |                 |                |                              |
| WP-18R   | <b></b>                        |                                |     |                 |                |                              |
| WP-19    | $\times$                       | $\times$                       | X   | $\times$        | $\times$       |                              |
| WP-20    |                                |                                |     |                 |                |                              |
| WP-21    |                                |                                |     |                 |                |                              |
| WP-22    |                                |                                |     |                 |                |                              |

EA 5120 0794-4 Page 1 of 1



# FIELD RECORD OF BIOSPARGING WELL POINT MONITORING Biosparging System, Old Navy Fuel Farm, Naval Air Station, Brunswick Maine

| EA Personnel: KI     | Date: 5/21/38                | Time: 0730                    |
|----------------------|------------------------------|-------------------------------|
| Weather: CLEAR, 70°F | Instrument(s): SOLING - INTE | TVA-1000,<br>GACE 1606, 9A-90 |

| Location | FID TVH<br>(ppm <sub>v</sub> ) | PID TVH<br>(ppm <sub>v</sub> ) | CH₄      | CO <sub>2</sub> | 02   | Comments                              |
|----------|--------------------------------|--------------------------------|----------|-----------------|------|---------------------------------------|
| WP-1     | 0.25                           | 34                             | 0        | 0               | 21,5 |                                       |
| WP-2     | 347                            | 112                            | 0        | 0               | 21,5 |                                       |
| WP-3     | 2                              | 23                             | Ŏ        | 01              | 21,3 |                                       |
| WP-4     | 134                            | 32                             | 0        | 0               | 21.8 |                                       |
| WP-5     | -17                            | 42                             | O        | 0               | ZIS  |                                       |
| WP-6     | 136                            | 18                             | 0        | 50              | Zis  |                                       |
| WP-7     | 400                            | 26                             | 0,2      | 0               | 21.7 |                                       |
| WP-8     | 2.5                            | 0,4                            | 0,0      | D               | 22,0 |                                       |
| WP-9     | 0,5                            | 18                             | 0        | 0               | 22.1 |                                       |
| WP-10    | 0,4                            | 2.5                            | Ö        | 0               | کہاح | ·                                     |
| WP-11    | 9                              |                                | 0.1      | O               | 21.8 | · · · · · · · · · · · · · · · · · · · |
| WP-12    | j                              | 2                              | 0.1      | 012             | 55'  |                                       |
| WP-13    |                                | 0                              | 0        | 0               | C.45 |                                       |
| WP-14    | 0,1                            | 18.Z                           | 0,0      | 0               | 21.4 |                                       |
| WP-15    |                                | 0,5                            | 0.1      | <u> তি,3</u>    | 2/24 |                                       |
| WP-16R   | 6                              | 2,0                            | 0        | 6               | 2/25 |                                       |
| WP-17R   |                                | 0                              | <u>გ</u> | O               | 51.6 |                                       |
| WP-18R   | 0,5                            | 3                              | , 0      | 0               | 21,5 |                                       |
| WP-20    | 1.5                            | 0.7                            | 0.0      | 0               | 21.6 |                                       |
| WP-21    |                                | O                              | à        | Э               | 21.5 |                                       |
| WP-22    | 4                              | 0                              | 0        | 6               | 2/16 |                                       |



#### FIELD RECORD OF BIOSPARGING WELL POINT MONITORING Biosparging System, Old Navy Fuel Farm, Naval Air Station, Brunswick Maine

| EA Personnel: BDA           | Date: 6/16/98  | Time: 0810    |
|-----------------------------|----------------|---------------|
| Weather: Overcast, Rain 75° | Instrument(s): | 7 1000, GA 90 |

|          | FID TVH             | PID TVH             |           |                 |                |           |
|----------|---------------------|---------------------|-----------|-----------------|----------------|-----------|
| Location | (ppm <sub>v</sub> ) | (ppm <sub>v</sub> ) | CH₄       | CO <sub>2</sub> | O <sub>2</sub> | Comments  |
| WP-1     | 87                  | 0                   | 0         | 0               | 20,8           |           |
| WP-2     | 5,420               | 270                 | 2.7       | ,5              | 19.7           |           |
| WP-3     | 36                  | 00                  | 0         | 0.0             | <i>3</i> 0,8   |           |
| WP-4     | 1%                  | 190                 | 0         | 1.0             | 18.8           |           |
| WP-5     | 226                 | 3                   | 0.1       | 0,9             | 20,5           |           |
| WP-6     | 35                  | 8                   | 0         | , 1             | 20,8           |           |
| WP-7     | 4,230               | <i>ବ</i> ର5         | .3        | , }             | 20,8           |           |
| WP-8     | 7.860               | 330                 | 0         | 0               | 20,6           |           |
| WP-9     | 2                   | (8)                 | 0         | 0               | 20.8           |           |
| WP-10    |                     | 6                   | 0         | 0               | 20,8           |           |
| WP-11    | 65                  | 4                   | 0         | 0               | 20,8           |           |
| WP-12    | 5.                  | 0                   | , )       | 6.6             | 12.7           |           |
| WP-13    |                     |                     |           |                 | 20,8           | Bent over |
| WP-14    |                     |                     | 0         | 0               | 20,8           |           |
| WP-15    | 5_                  | 3                   | 0         | ,5              | 205            |           |
| WP-16R   |                     |                     |           |                 |                |           |
| WP-17R   |                     |                     |           |                 |                |           |
| WP-18R   |                     |                     |           |                 |                |           |
| WP-19    |                     |                     |           |                 |                |           |
| WP-20    | Des                 | troy                | <u>ed</u> |                 |                |           |
| WP-21    |                     |                     |           |                 |                |           |
| WP-22    |                     |                     |           |                 |                |           |

EA 5120 0794-4 @ PID not reading - Humidity/Rain Page 1 of 1



### FIELD RECORD OF BIOSPARGING WELL POINT MONITORING Biosparging System, Old Navy Fuel Farm, Naval Air Station, Brunswick Maine

| EA Personnel: MDC              | Date: 2115              | Time:    |
|--------------------------------|-------------------------|----------|
| Weather: Synny 7°F 20 mpH wind | Instrument(s): (A A -90 | TUA-1000 |

| Location | FID TVH<br>(ppm <sub>v</sub> ) | PID TVH<br>(ppm <sub>v</sub> ) | CH₄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO <sub>2</sub> | O <sub>2</sub> | Comments |
|----------|--------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|----------|
| WP-1     | 0                              | 0                              | ٥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0               | 21,1           |          |
| WP-2     | 650                            | 74                             | 0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8             | 19.9           |          |
| WP-3     | 30                             | a                              | 0.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,2             | 20.6           |          |
| WP-4     | 31                             | Ì                              | 0.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0               | 20.6           |          |
| WP-5     | 0                              | 0                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0               | 21,5           |          |
| WP-6     | 0                              | Ö                              | 0.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0               | 20.9           |          |
| WP-7     | 102                            | 25                             | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0               | 20.8           |          |
| WP-8     | 0                              | 0                              | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0               | 20.5           | -        |
| WP-9     | 0                              | 0.                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0               | 2016           |          |
| WP-10    | 50                             | ٨.                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ; [             | یکار کے        |          |
| WP-11    | 600                            | 55                             | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0               | 19,3           |          |
| WP-12    | 52                             | 5                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1             | 2010           |          |
| WP-13    | Lan                            | not o                          | oen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                |          |
| WP-14    | 0                              | 0                              | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\circ$         | 1104           |          |
| WP-15    | 000                            | S CO                           | THE POPULATION OF THE POPULATI | 011             | 19.8           |          |
| WP-16R   | ~                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                | ,        |
| WP-17R   |                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |          |
| WP-18R   |                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |          |
| WP-20    | 0                              | 0                              | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,0             | 2012           |          |
| WP-21    |                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |          |
| WP-22    |                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |          |

EA 5120 0794-4 Page 1 of 2



### FIELD RECORD OF BIOSPARGING WELL POINT MONITORING Biosparging System, Old Navy Fuel Farm, Naval Air Station, Brunswick Maine

| EA Personnel: BDA         | Date: 6/16/98            | Time: 0810 |
|---------------------------|--------------------------|------------|
| Weather: Rescart Rain 750 | Instrument(s): TVA (UCO) | GA 90      |

|          |                                |                                |          | ,=====          |                |           |
|----------|--------------------------------|--------------------------------|----------|-----------------|----------------|-----------|
| Location | FID TVH<br>(ppm <sub>v</sub> ) | PID TVH<br>(ppm <sub>v</sub> ) | CH₄      | CO <sub>2</sub> | O <sub>2</sub> | Comments  |
| WP-1     | 87                             | 0                              | 0        | 0               | 208            |           |
| WP-2     | 5,420                          | 270                            | 2.7      | .5              | 19.7           |           |
| WP-3     | 36                             | 00                             | Ö        | Q,Z             | 208            |           |
| WP-4     | 1%                             | 120                            | 0        | 1.0             | 188            |           |
| WP-5     | 226.                           | 3                              | 0.1      | 0.9             | 20.5           |           |
| WP-6     | 35                             | 8                              | 0        | 1               | 20.8           | ·         |
| WP-7     | 4230                           | 225                            | · · 3    | 1               | 20.8           |           |
| WP-8     | 7860                           | 330                            | . O      | 0               | 20.6           |           |
| WP-9     | 2                              | _@                             | 0        | 0               | 208            |           |
| WP-10    | 1 .                            | 6                              | 0        | 0               | 20.8           |           |
| WP-11    | 65                             | 4                              | 0        | 0               | 20.8           |           |
| WP-12    | 5                              | 0                              | /        | 6.6             | 12.7           |           |
| WP-13    | BEN                            | 1000                           | <u> </u> | <u>ا</u>        | 20.8           | -Bentonen |
| WP-14    | 1                              | 7                              | 0        | 0               | 20.8           |           |
| WP-15    | 5                              | 3                              | 6_       | 15              | 20.5           |           |
| WP-16R   |                                |                                | i        |                 |                |           |
| WP-17R   |                                |                                | <br>     |                 |                |           |
| WP-18R   |                                |                                |          |                 |                |           |
| WP-20    | Destrog                        | ed                             |          |                 |                | 3:        |
| WP-21    |                                |                                |          | ļ<br>           |                |           |
| WP-22    |                                |                                |          |                 |                | D1-62     |

EA 5120 0794-4

@ PID not reading - humidity/rain

Page 1 of 2

#### Appendix C

Field Record of Well Gauging, Purging, and Sampling Forms



| Site Name: Well ID: Well Condition:                                    | Full for<br>WP-1<br>Good                         | rm          | Project Number: Well Lock Statu: Weather:            |                            | )960).<br>NA<br>artly sv              | ung leds     |
|------------------------------------------------------------------------|--------------------------------------------------|-------------|------------------------------------------------------|----------------------------|---------------------------------------|--------------|
| Gauge Date:<br>Sounding Method:<br>Stick Up/Down (ft):                 | lellel98<br>Interfac                             |             | Gauge Time:<br>Measurement Ro<br>Well Diameter (i    | _                          | 0830<br>100<br>2"                     |              |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                      | 1500 pun<br>0.0                                  | no          | Purge Time:<br>Field Personnel:<br>Well Mouth VO     | <br>Cs (ppm):              | 5 min<br>BDA<br>0.0                   |              |
| A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B) | 8.23<br>3.78<br>4.45                             | WELLV       | OLUME  D. Well Volume C. Well Volume E. Three Well V | (L)                        | .16<br>.79<br>2.38                    |              |
| Parameter                                                              | Beginning                                        | 1           | 2                                                    | 3                          | 4                                     | 5            |
| Time (min.)                                                            | 0830                                             |             |                                                      |                            |                                       |              |
| Depth to Water (ft)                                                    | 3.28                                             |             |                                                      |                            |                                       |              |
| Purge Rate (I/min)                                                     |                                                  |             |                                                      | L                          |                                       |              |
| Volume Purged (L)                                                      | -                                                |             |                                                      |                            |                                       | <u>-</u>     |
| рН                                                                     | 6.80                                             |             |                                                      |                            |                                       |              |
| Temperature (°C)                                                       | 1/3.45                                           |             |                                                      |                            |                                       | [            |
| Conductivity (µmhos/cm)                                                | 1/3/                                             |             |                                                      |                            |                                       |              |
| Dissolved Oxygen (mg/L)                                                | 2.60                                             |             |                                                      |                            |                                       | <del> </del> |
| Turbidity (NTU)                                                        | 17/                                              |             |                                                      |                            |                                       |              |
| eH (mV)                                                                | 013                                              |             |                                                      | <del></del>                |                                       | <u> </u>     |
| Total Quantity of Water Remo                                           | wad (I ): 2.                                     | 5 2         |                                                      | - <del>1</del> - 1 - 1 - 1 |                                       |              |
| Samplers:                                                              | BAIRC                                            | Sampling T  | Time (Start/End):                                    | 1400                       | )                                     |              |
| Sampling Date:                                                         | 6/18/98                                          |             | nation Fluids Used                                   |                            | ·                                     |              |
| Sample Type:                                                           | grab                                             | Sample Pre  |                                                      | HCC                        | · · · · · · · · · · · · · · · · · · · |              |
| Sample Bottle IDs:                                                     | VASBFFO                                          | HUPOO       | Ì                                                    |                            |                                       |              |
| Sample Parameters:                                                     | VAC. TP                                          | Hard        | TPH C                                                | dro FA                     | mn                                    |              |
| Comments and Observations:                                             | <del>-                                    </del> | 0           | , <del></del>                                        | /                          |                                       | -            |
| Commission and Constitutions.                                          |                                                  |             |                                                      |                            |                                       |              |
|                                                                        |                                                  | <del></del> |                                                      | <del></del>                |                                       |              |



| <u> </u>                        | Fuel FARN       |              |                                                   |             | 9600.35                               | <del>,                                    </del> |
|---------------------------------|-----------------|--------------|---------------------------------------------------|-------------|---------------------------------------|--------------------------------------------------|
| Site Name:                      | WP-02           | <b></b>      | Project Number:                                   |             | grad                                  |                                                  |
| Well ID:                        | good            |              | Well Lock Status                                  | s:          | 1                                     |                                                  |
| Well Condition:                 | 3000            |              | Weather:                                          | ے۔          | loudy,                                |                                                  |
|                                 |                 |              |                                                   | 1           |                                       | :                                                |
| Gauge Date:                     | 6/16/98         |              | Gauge Time:                                       |             | 0830                                  |                                                  |
| Sounding Method:                | Indufae         |              | Measurement Re                                    | ef:         | TOC                                   |                                                  |
| Stick Up/Down (ft):             |                 |              | Well Diameter (i                                  | n.):        | 2"                                    |                                                  |
|                                 |                 |              |                                                   |             |                                       |                                                  |
| Purge Date:                     | 6/17/98         |              | Purge Time:                                       |             | 5 min                                 |                                                  |
| Purge Method:                   | Isco pump.      |              | Field Personnel:                                  |             | BDA                                   |                                                  |
| Ambient Air VOCs (ppm):         | 0.0             |              | Well Mouth VO                                     | Cs (ppm): 2 | 70.0                                  |                                                  |
|                                 |                 |              |                                                   |             |                                       |                                                  |
|                                 | -4 - 4          | WELL V       | OLUME                                             |             | · · · · · · · · · · · · · · · · · · · |                                                  |
| A. Well Depth (ft):             | 8.22            |              | D. Well Volume                                    | /ft (L):    | 016                                   |                                                  |
| B. Depth to Water (ft):         | 4.02            |              | C. Well Volume                                    | (L)         | .672                                  |                                                  |
| E. Liquid Depth (ft) (A-B)      | 4.20            |              | E. Three Well V                                   | olumes (L)  | 2016                                  | . <u>.</u>                                       |
| L                               | <del></del>     |              | <del>- 11</del>                                   |             |                                       | لعسيسهست                                         |
| Parameter                       | Daginning       |              | 7                                                 | 3           | 4                                     | 5                                                |
|                                 | Beginning       |              | 2                                                 |             | 4                                     |                                                  |
| Time (min.)                     | 0850            | <del> </del> |                                                   |             |                                       |                                                  |
| Depth to Water (ft)             | 4.02            |              |                                                   |             |                                       |                                                  |
| Purge Rate (I/min)              |                 |              |                                                   |             |                                       |                                                  |
| Volume Purged (L)               | 150             |              |                                                   |             |                                       |                                                  |
| pH                              | 6.86            |              |                                                   |             |                                       |                                                  |
| Temperature (°C)                | 16.06           |              |                                                   |             |                                       |                                                  |
| Conductivity (µmhos/cm)         | 65              |              |                                                   |             |                                       |                                                  |
| Dissolved Oxygen (mg/L)         | 3.62            |              |                                                   |             |                                       |                                                  |
| Turbidity (NTU)                 |                 | :            |                                                   |             | <u></u>                               |                                                  |
| eH (mV)                         | 172             |              |                                                   |             |                                       |                                                  |
|                                 |                 |              |                                                   |             |                                       |                                                  |
| Total Quantity of Water Remo    | ved (L):   hell | vol + 2.     | 52 suple.                                         |             |                                       |                                                  |
| Samplers:                       | RDA             |              | ime (Start/End):                                  | 090         | 0-0915                                |                                                  |
| Sampling Date:                  | 6/18/98         |              | nation Fluids Used                                |             | , <u> </u>                            |                                                  |
| Sample Type:                    | Grab            | Sample Pre   |                                                   | <u> </u>    | Ĺ                                     |                                                  |
| Sample Type. Sample Bottle IDs: | NASB FF 021     |              | MS/MSD                                            | (RB- 08     |                                       |                                                  |
| 7                               | I/OC TPH (      |              | Deo , F.                                          | M           | <del></del>                           |                                                  |
| Sample Parameters:              |                 | <u> </u>     |                                                   | ' 'N        |                                       |                                                  |
| Comments and Observations:      |                 | <del></del>  |                                                   |             |                                       |                                                  |
|                                 |                 |              | <del>, , , , , , , , , , , , , , , , , , , </del> |             | <del></del>                           |                                                  |
|                                 |                 | <del></del>  |                                                   |             |                                       |                                                  |



| Site Name:<br>Well ID:<br>Well Condition:                                                                                                                                 | full far<br>WP-3<br>Good                                     | M            | Project Number: Well Lock Status: Weather:                |                                | 29600.<br>NA<br>Sunny ( | 35<br>20's |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------|-----------------------------------------------------------|--------------------------------|-------------------------|------------|
| Gauge Date: Sounding Method: Stick Up/Down (ft):                                                                                                                          | 6/16/98<br>Interfer                                          | Cl           | Gauge Time: Measurement I Well Diameter                   |                                | 0830<br>TOC<br>2"       |            |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                                                                                                                         | 6/17/98<br>Isco pu<br>0.0                                    | ф            | Purge Time: Field Personne Well Mouth V                   |                                | 5min<br>BDA<br>0.0      |            |
| A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B)                                                                                                    | 7.51<br>2.96<br>4.55                                         | WELL         | VOLUME  _ D. Well Volun  _ C. Well Volun  _ E. Three Well | ne (L)                         | .16<br>.73<br>2.14      |            |
| Parameter                                                                                                                                                                 | Beginning                                                    | 1            | 2                                                         | 3                              | 4                       | 5          |
| Time (min.)  Depth to Water (ft)  Purge Rate (gpm)  Volume Purged (gal)  pH  Temperature (°C)  Conductivity (µmhos/cm)  Dissolved Oxygen (mg/L)  Turbidity (NTU)  eH (mV) | 1600<br>2,96<br>-<br>6,88<br>15,52<br>50<br>4,73<br>-<br>174 | 3 1          |                                                           |                                |                         |            |
| Samplers: Sampling Date: Sample Type: Sample Bottle IDs: Sample Parameters: Comments and Obser                                                                            | BAIRC<br>6/18/98<br>grab<br>NASBFF<br>VOC, 7                 | Sampling Tin | _                                                         | 1655<br>-71<br>-#CL<br>+gro, f | Ty Man                  |            |



|                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                                                   |                            | 73717 / >          |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------|--------------------|--------------|
| Site Name:                                                                                                                                                                                                                                    | tel fur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m                                                | _ Project Number                                  |                            | 29(000.            | 35           |
| Well ID:                                                                                                                                                                                                                                      | 100-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>                                      | _ Well Lock Star                                  | tus: _                     | NA (VÉ             |              |
| Well Condition:                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·                                                | Weather:                                          |                            | Sunny 60.5         |              |
|                                                                                                                                                                                                                                               | 111111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | <del></del>                                       |                            | 10111              |              |
| Gauge Date:                                                                                                                                                                                                                                   | 6/16/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | _ Gauge Time:                                     | _                          | 0830               |              |
| Sounding Method:                                                                                                                                                                                                                              | Interstace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | _ Measurement I                                   |                            | 700                | <del></del>  |
| Stick Up/Down (ft):                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | _ Well Diameter                                   | (in.):                     |                    |              |
|                                                                                                                                                                                                                                               | 1.117188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del>                                      |                                                   |                            | E 124 :            |              |
| Purge Date:                                                                                                                                                                                                                                   | T202 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | _ Purge Time:                                     | _                          | 5 mi               | <u> </u>     |
| Purge Method:                                                                                                                                                                                                                                 | Tsco pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | up.                                              | _ Field Personne                                  |                            | (30)               | <del>-</del> |
| Ambient Air VOCs (ppm):                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | _ Well Mouth V                                    | OCs (ppm): _               | 1 20               |              |
|                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WFII                                             | VOLUME                                            |                            | <del></del>        | <del></del>  |
| A. Well Depth (ft):                                                                                                                                                                                                                           | 7.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·            | D. Well Volum                                     | ne/ft (L):                 | 16                 |              |
| B. Depth to Water (ft):                                                                                                                                                                                                                       | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | C. Well Volun                                     | ` '                        | 0.82<br>2.46       |              |
| E. Liquid Depth (ft) (A-B)                                                                                                                                                                                                                    | 5.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | _ E. Three Well                                   | • •                        |                    |              |
| ar ardara a shar (s) (s = )                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                |                                                   |                            |                    |              |
| Parameter                                                                                                                                                                                                                                     | Beginning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                | 2                                                 | 3                          | 4                  | 5            |
| Time (min.)                                                                                                                                                                                                                                   | 1115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                                   |                            |                    | <u>.</u> .   |
|                                                                                                                                                                                                                                               | 10.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del>                                     </del> |                                                   | <del></del>                | <del></del>        |              |
| Depth to Water (ft)                                                                                                                                                                                                                           | 12.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |                                                   |                            |                    |              |
| Depth to Water (ft) Purge Rate (gpm)                                                                                                                                                                                                          | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del>                                     </del> |                                                   |                            |                    |              |
|                                                                                                                                                                                                                                               | 2,49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                                   |                            |                    |              |
| Purge Rate (gpm)                                                                                                                                                                                                                              | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                                   |                            |                    |              |
| Purge Rate (gpm)  Volume Purged (gal)  pH                                                                                                                                                                                                     | 6.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                                   |                            |                    |              |
| Purge Rate (gpm)  Volume Purged (gal)                                                                                                                                                                                                         | 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                                                   |                            |                    |              |
| Purge Rate (gpm)  Volume Purged (gal)  pH  Temperature (°C)                                                                                                                                                                                   | 16.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |                                                   |                            |                    |              |
| Purge Rate (gpm)  Volume Purged (gal)  pH  Temperature (°C)  Conductivity (µmhos/cm)                                                                                                                                                          | 16.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |                                                   |                            |                    |              |
| Purge Rate (gpm)  Volume Purged (gal)  pH  Temperature (°C)  Conductivity (\(\mu\)mhos/cm)  Dissolved Oxygen (mg/L)  Turbidity (NTU)                                                                                                          | 16.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |                                                   |                            |                    |              |
| Purge Rate (gpm)  Volume Purged (gal)  pH  Temperature (°C)  Conductivity (µmhos/cm)  Dissolved Oxygen (mg/L)                                                                                                                                 | 16.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |                                                   |                            |                    |              |
| Purge Rate (gpm)  Volume Purged (gal)  pH  Temperature (°C)  Conductivity (\(\mu\)mhos/cm)  Dissolved Oxygen (mg/L)  Turbidity (NTU)  eH (mV)                                                                                                 | b.01<br> 62<br> 3.41<br> -<br> 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4+                                               | 2 = 6                                             |                            |                    |              |
| Purge Rate (gpm)  Volume Purged (gal)  pH  Temperature (°C)  Conductivity (µmhos/cm)  Dissolved Oxygen (mg/L)  Turbidity (NTU)  eH (mV)  Total Quantity of W                                                                                  | b.01<br> 62<br> 3.41<br> -<br> 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 t i                                            |                                                   |                            |                    |              |
| Purge Rate (gpm)  Volume Purged (gal)  pH  Temperature (°C)  Conductivity (µmhos/cm)  Dissolved Oxygen (mg/L)  Turbidity (NTU)  eH (mV)  Total Quantity of W  Samplers:                                                                       | 16,01<br>  62<br>  3,41<br>  -<br>  122<br>  (2)   60<br>  60   60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sampling Tin                                     | ne (Start/End):                                   | 161                        |                    |              |
| Purge Rate (gpm)  Volume Purged (gal)  pH  Temperature (°C)  Conductivity (µmhos/cm)  Dissolved Oxygen (mg/L)  Turbidity (NTU)  eH (mV)  Total Quantity of W  Samplers:  Sampling Date:                                                       | 16.01<br>  62<br>  3.41<br>  132<br>  (32)<br>  (34)<br>  (4)<br>  (4)<br>  (5)<br>  (6)<br>  (7)<br>  (7)<br>  (8)<br>   Sampling Tin                                     | ne (Start/End):<br>tion Fluids Used:              |                            |                    |              |
| Purge Rate (gpm)  Volume Purged (gal)  pH  Temperature (°C)  Conductivity (µmhos/cm)  Dissolved Oxygen (mg/L)  Turbidity (NTU)  eH (mV)  Total Quantity of W  Samplers:  Sampling Date:  Sample Type:                                         | 16,01<br>  62<br>  3,41<br>  -<br>  122<br>  (2)   60<br>  60   60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sampling Tin                                     | ne (Start/End):<br>tion Fluids Used:<br>rvatives: | DI<br>HC                   |                    |              |
| Purge Rate (gpm)  Volume Purged (gal)  pH  Temperature (°C)  Conductivity (µmhos/cm)  Dissolved Oxygen (mg/L)  Turbidity (NTU)  eH (mV)  Total Quantity of W  Samplers:  Sampling Date:  Sample Bottle IDs:                                   | 16.01<br>62<br>3.41<br>122<br>Vater Removed (L):<br>6A [RC<br>6] 18 [98<br>9) Valo<br>NASBFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sampling Tin Decontaminat Sample Prese           | ne (Start/End):<br>tion Fluids Used:<br>rvatives: | Jb19<br>DI<br>HC<br>ASBFFC | S<br>L<br>HWP X D3 | <b>-</b>     |
| Purge Rate (gpm)  Volume Purged (gal)  pH  Temperature (°C)  Conductivity (µmhos/cm)  Dissolved Oxygen (mg/L)  Turbidity (NTU)  eH (mV)  Total Quantity of W  Samplers:  Sampling Date:  Sample Type:  Sample Bottle IDs:  Sample Parameters: | 16,01<br>  62<br>  3,41<br>  -<br>  122<br>  122<br>  6A   RC<br>  6  18   98<br>  9   7   26<br>  NASBFF<br>  VOC,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sampling Tin Decontaminat Sample Prese           | ne (Start/End):<br>tion Fluids Used:<br>rvatives: | DI<br>HC                   |                    |              |
| Purge Rate (gpm)  Volume Purged (gal)  pH  Temperature (°C)  Conductivity (µmhos/cm)  Dissolved Oxygen (mg/L)  Turbidity (NTU)  eH (mV)  Total Quantity of W  Samplers:  Sampling Date:  Sample Bottle IDs:                                   | 16,01<br>  62<br>  3,41<br>  -<br>  122<br>  122<br>  6A   RC<br>  6  18   98<br>  9   7   26<br>  NASBFF<br>  VOC,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sampling Tin Decontaminat Sample Prese           | ne (Start/End):<br>tion Fluids Used:<br>rvatives: | DI<br>HC                   |                    |              |



| Site Name:                   | fuel farm       |                    | _ Project Number                                 | r:                                               | 29600-35       |              |  |
|------------------------------|-----------------|--------------------|--------------------------------------------------|--------------------------------------------------|----------------|--------------|--|
| Well ID:                     | WP-5            | <del></del>        | _ Well Lock Statu                                | ıs:                                              | NA             | <del></del>  |  |
| Well Condition:              | 900d            |                    | _ Weather:                                       |                                                  | cloudy         | 605          |  |
|                              |                 |                    |                                                  |                                                  |                |              |  |
| Gauge Date:                  | Le116/98        |                    | Gauge Time:                                      |                                                  | 0830           |              |  |
| Sounding Method:             | Interface       | e                  | _ Measurement R                                  | lef:                                             | TOC            |              |  |
| Stick Up/Down (ft):          |                 |                    | _ Well Diameter (                                | (in.):                                           | 2"             |              |  |
|                              |                 | <del></del>        |                                                  |                                                  |                |              |  |
| Purge Date:                  | 617198          |                    | Purge Time:                                      | <del></del>                                      | 5 min          |              |  |
| Purge Method:                | Isco pu         | VP                 | _ Field Personnel:                               |                                                  | BDA            |              |  |
| Ambient Air VOCs (ppm):      | 0.0             |                    | _ Well Mouth VC                                  | OCs (ppm):                                       | 3              |              |  |
|                              |                 |                    |                                                  |                                                  |                |              |  |
|                              |                 | WELL               | OLUME                                            |                                                  |                |              |  |
| A. Well Depth (ft):          | 7.74            |                    | D. Well Volume                                   | e/ft (L):                                        | .16            |              |  |
| B. Depth to Water (ft):      | 3.71            |                    | C. Well Volume                                   |                                                  | 0.64           |              |  |
| E. Liquid Depth (ft) (A-B)   | 4.03            | ·                  | E. Three Well V                                  | Volumes (L)                                      | 1.93           |              |  |
|                              |                 |                    |                                                  |                                                  |                |              |  |
| Parameter                    | Beginning       | 1                  | 2                                                | 3                                                | 4              | 5            |  |
| Time (min.)                  | 0845            |                    | <del>                                     </del> | <del>                                     </del> |                |              |  |
| Depth to Water (ft)          | 377             |                    | <del> </del>                                     | <del> </del>                                     |                |              |  |
| Purge Rate (1/min)           |                 |                    | <del>                                     </del> |                                                  | <del>-  </del> | <del></del>  |  |
| Volume Purged (L)            |                 | ·                  | <del> </del>                                     |                                                  | 1              |              |  |
| pH                           | 6,90            |                    |                                                  |                                                  |                | -            |  |
| Temperature (°C)             | 16.21           | <del></del>        |                                                  |                                                  |                |              |  |
| Conductivity (µmhos/cm)      | 36              |                    | <del> </del>                                     |                                                  | <del>- </del>  |              |  |
| Dissolved Oxygen (mg/L)      | 6.88            |                    |                                                  |                                                  |                |              |  |
| Turbidity (NTU)              |                 |                    |                                                  |                                                  |                |              |  |
| eH (mV)                      | 169             |                    | 1                                                |                                                  |                |              |  |
| (MY)                         |                 |                    | <del> </del>                                     | <u> </u>                                         |                |              |  |
| Total Quantity of Water Remo | ved (I.):       |                    |                                                  | <del></del>                                      |                |              |  |
|                              | DAIDA           | Co1!               | Time (Ctant M- 1)                                | 1 7                                              | 345            |              |  |
| Samplers:                    | Talklax         |                    | Time (Start/End):                                | 1. T                                             | <u> </u>       |              |  |
| Sampling Date:               | Wah             | <del></del> .      | ination Fluids Use                               | u: <u> </u>                                      |                |              |  |
| Sample Type:                 | MASAFED         | Sample Pr<br>生のものと | eservatives:                                     |                                                  |                | <del> </del> |  |
| Sample Bottle IDs:           | 1000 -          | 211-10             | 701                                              | 1 Dri                                            | En 11.         | <del></del>  |  |
| Sample Parameters:           | <u> 105, 11</u> | TT CAS             | / 1 7                                            | 1 Str a                                          | re, WU         |              |  |
| Comments and Observations:   |                 |                    | <del></del>                                      | <del></del>                                      |                |              |  |
|                              |                 |                    |                                                  | <del></del> <u></u>                              |                |              |  |
|                              |                 |                    |                                                  |                                                  |                |              |  |



| Site Name: Well ID: Well Condition:     | Juel far<br>WP-6<br>good | <u>m</u>    | Project Number: Well Lock Status Weather: | s:              | 29600, 35<br>NA<br>Surry 605            |              |
|-----------------------------------------|--------------------------|-------------|-------------------------------------------|-----------------|-----------------------------------------|--------------|
| Gauge Date:                             | 6/16/98                  | (1 0        | Gauge Time:                               | -               | 0830                                    |              |
| Sounding Method:<br>Stick Up/Down (ft): | INC. TU                  | <u>Ck</u>   | Measurement Re Well Diameter (in          | <del></del> -   | 2"                                      |              |
| Suck Op/Down (11).                      |                          |             | Well Diameter (                           | 1.).            | ======================================= |              |
| Purge Date:                             | 6117198                  |             | Purge Time:                               | <del></del>     | 5 min                                   |              |
| Purge Method:                           |                          | шр          | Field Personnel:                          | _               | BDA                                     |              |
| Ambient Air VOCs (ppm):                 | <u> </u>                 |             | Well Mouth VO                             | Cs (ppm):       | <u> </u>                                |              |
|                                         |                          |             |                                           |                 |                                         |              |
| A. Well Depth (ft):                     | 7-62                     | WELL VO     | OLUME  D. Well Volume                     | •/ <del>በ</del> | .16                                     |              |
| B. Depth to Water (ft):                 | 2.35                     |             | C. Well Volume                            | • • •           | 0.84<br>2.53                            |              |
| E. Liquid Depth (ft) (A-B)              | 5.27                     |             | . E. Three Well V                         | • •             |                                         |              |
|                                         |                          |             |                                           |                 |                                         |              |
| Parameter                               | Beginning                | 1           | 2                                         | 3               | 4                                       | 5            |
| Time (min.)                             | 915                      |             |                                           | <u> </u>        |                                         |              |
| Depth to Water (ft)                     | 2.35                     |             |                                           |                 |                                         | l l          |
| Purge Rate (I/min)                      |                          | <b></b>     |                                           | <b></b>         |                                         |              |
| Volume Purged (L)                       |                          | <b></b>     |                                           | <b></b>         | <u> </u>                                | ļ            |
| рН                                      | 16.85                    | <b></b>     | <b></b>                                   | <b></b>         | <del> </del>                            | <u> </u>     |
| Temperature (°C)                        | 115,49                   | <b></b>     | <b></b>                                   | <b></b>         | <del> </del>                            | <del> </del> |
| Conductivity (µmhos/cm)                 | 1,00                     | <del></del> | <del> </del>                              | <del></del>     | <del> </del>                            | <del></del>  |
| Dissolved Oxygen (mg/L)                 | 14,21                    | <del></del> | <del>  </del>                             | <del></del>     | <del> </del>                            | <del> </del> |
| Turbidity (NTU)                         |                          | <b></b>     | <u> </u>                                  | <b></b>         | <u> </u>                                |              |
| eH (mV)                                 |                          | <u></u>     |                                           | L               | <u> </u>                                |              |
|                                         |                          | 1+2 = (     | <del>,</del>                              |                 |                                         |              |
| Total Quantity of Water Remo            | ved (L):                 |             |                                           | 141             | 1                                       |              |
| Samplers:                               | 1.118108                 |             | Time (Start/End):                         | <del></del>     | <del>5</del>                            |              |
| Sampling Date:                          | 0110110<br>ancih         |             | ination Fluids Used                       | 1: <u></u>      |                                         |              |
| Sample Type:                            | MASSEED                  |             | eservatives:<br>DS NA                     | ZAFFAI          | LL<br>HWPXD                             | . 1          |
| Sample Bottle IDs:                      | White T                  | MIL due     | TOH TOH                                   | SOUTE F         | 1 MIN                                   |              |
| Sample Parameters:                      | 100-                     | JH WY       | <del></del>                               | Gy U +I         | e, we                                   |              |
| Comments and Observations:              | Collected                | 700         | <del>T</del>                              |                 |                                         |              |
|                                         | _ william                |             | ــــــــــــــــــــــــــــــــــــــ    |                 |                                         |              |
| <del> </del>                            |                          |             |                                           |                 |                                         |              |



| Site Name: Well ID: Well Condition:                                                                               | fuel fam<br>wp-7<br>cool                      | 1                                                        | Project Numbe<br>Well Lock Stat<br>Weather:        |                         | 29600.3<br>NA<br>Sunny | 60'S |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|----------------------------------------------------|-------------------------|------------------------|------|
| Gauge Date: Sounding Method: Stick Up/Down (ft):                                                                  | 6/16/98<br>Interface                          | 2                                                        | Gauge Time: Measurement I Well Diameter            |                         | 0830<br>TOC<br>2"      |      |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                                                                 |                                               | 8<br>up                                                  | Purge Time:<br>Field Personne<br>Well Mouth V      |                         | 5 min<br>BDA<br>22     | 5    |
| A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B)                                            | 7.78<br>3.00<br>4.78                          | WELL V                                                   | OLUME  D. Well Volum  C. Well Volum  E. Three Well | ne (L)                  | .16<br>0.76<br>2.29    |      |
| Parameter                                                                                                         | Beginning                                     | 1                                                        | 2                                                  | 3                       | 4                      | 5    |
| Time (min.)  Depth to Water (ft)  Purge Rate (gpm)  Volume Purged (gal)                                           | 3,00                                          |                                                          |                                                    |                         |                        |      |
| pH<br>Temperature (°C)                                                                                            | 6.65<br>14.33<br>123                          |                                                          |                                                    |                         |                        |      |
| Conductivity (\(\mu\)mhos/cm)  Dissolved Oxygen (mg/L)  Turbidity (NTU)                                           | 3.45                                          |                                                          |                                                    |                         |                        |      |
| eH (mV)                                                                                                           | 173                                           |                                                          |                                                    |                         |                        |      |
| Total Quantity of W Samplers: Sampling Date: Sample Type: Sample Bottle IDs: Sample Parameters: Comments and Obse | BA/RC<br>6/16/98<br>9/ab<br>NASOFFO<br>VOC, T | Sampling Time Decontamination Sample Preserv HUPD PH-977 | on Fluids Used:                                    | 1505<br><u>DI</u><br>HC | L<br>E, Mn             |      |



| Site Name: Well ID: Well Condition:                                                                                                                                             | Juel fuim<br>UP-8<br>good                        |      | <del>-</del>                                              | Project Number:  Well Lock Status:  Weather: |                     | 24600.35<br>NA<br>Sunny (005 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------|-----------------------------------------------------------|----------------------------------------------|---------------------|------------------------------|--|
| Gauge Date:  Sounding Method:  Stick Up/Down (ft):                                                                                                                              | Collegs<br>Interface                             | L    | _ Gauge Time: _ Measurement I _ Well Diameter             |                                              | 0830<br>TDC.        |                              |  |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                                                                                                                               | 1500 purp<br>0                                   |      | Purge Time: Field Personnel: Well Mouth VOCs (ppm):       |                                              | 5 min<br>BDA<br>330 |                              |  |
| A. Well Depth (ft):  B. Depth to Water (ft):  E. Liquid Depth (ft) (A-B)                                                                                                        | 7.54<br>3.03<br>4.51                             | WELL | VOLUME  _ D. Well Volum  _ C. Well Volum  _ E. Three Well | ne (L)                                       | .16<br>0.72<br>2.16 | 12                           |  |
| Parameter                                                                                                                                                                       | Beginning                                        | 1    | 2                                                         | 3                                            | 4                   | 5                            |  |
| Time (min.)  Depth to Water (ft)  Purge Rate (gpm)  Volume Purged (gal)  pH  Temperature (°C)  Conductivity (\(\mu\)mhos/cm)  Dissolved Oxygen (mg/L)  Turbidity (NTU)  eH (mV) | 1015<br>3,03<br><br>6,55<br>13,84<br>221<br>1,96 |      |                                                           |                                              |                     |                              |  |
| Total Quantity of Wa<br>Samplers:<br>Sampling Date:<br>Sample Type:<br>Sample Bottle IDs:<br>Sample Parameters:<br>Comments and Obser                                           | BAIRC<br>6118198<br>grab<br>NASBFF<br>VOC T      |      |                                                           | 150<br>150<br>He                             | (                   |                              |  |



| Site Name:  Well ID:  Well Condition:                                                                                    | ful farm<br>WP-9<br>good                      |                                                                   | Project Numbe Well Lock Stat Weather:              |                              | 29600.35<br>NA<br>Sunny 60'S |   |  |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|------------------------------|------------------------------|---|--|
| Gauge Date:  Sounding Method:  Stick Up/Down (ft):                                                                       | 6/16/98<br>Interfac                           |                                                                   | Gauge Time: Measurement F Well Diameter            |                              | 0830<br>70C<br>2"            |   |  |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                                                                        | le 17 Fix<br>Toco p                           | шр                                                                | Purge Time: Field Personne Well Mouth Vo           |                              | 5 min<br>BDA<br>O            |   |  |
| A. Well Depth (ft):  B. Depth to Water (ft):  E. Liquid Depth (ft) (A-B)                                                 | er (ft): 3.05                                 |                                                                   | OLUME  D. Well Volum  C. Well Volum  E. Three Well | ne (L)                       | ,16<br>0.76<br>2.28          |   |  |
| Parameter                                                                                                                | Beginning                                     | 1                                                                 | 2                                                  | 3                            | 4                            | 5 |  |
| Time (min.)                                                                                                              | 1100                                          |                                                                   |                                                    |                              |                              |   |  |
| Depth to Water (ft)                                                                                                      | 3.05                                          |                                                                   |                                                    |                              |                              |   |  |
| Purge Rate (gpm)                                                                                                         |                                               |                                                                   |                                                    |                              |                              |   |  |
| Volume Purged (gal)                                                                                                      |                                               |                                                                   | <u> </u>                                           |                              | ļ                            |   |  |
| рН                                                                                                                       | 6.48                                          |                                                                   | <u> </u>                                           |                              |                              |   |  |
| Temperature (°C)                                                                                                         | 15.91                                         |                                                                   |                                                    |                              |                              |   |  |
| Conductivity (µmhos/cm)                                                                                                  | 113                                           |                                                                   | <del></del>                                        | -                            |                              |   |  |
| Dissolved Oxygen (mg/L)                                                                                                  | 0.04                                          | -                                                                 |                                                    |                              |                              |   |  |
| Turbidity (NTU)                                                                                                          | 127                                           | · -                                                               |                                                    |                              |                              |   |  |
| Total Quantity of Wat Samplers: Sampling Date: Sample Type: Sample Bottle IDs: Sample Parameters: Comments and Observers | er Removed (L):  PAIRC  UISIAS  GYUB  AIASBFF | Sampling Time<br>Decontaminati<br>Sample Preser<br>04 WP/<br>PH W | e (Start/End):<br>on Fluids Used:                  | IleOD<br>DI<br>HCC<br>gro, F | E, Mn.                       |   |  |



| Site Name: Well ID: Well Condition:                                                                                                                                                  | Jul farm<br>102 10<br>900                     |   | Project Number: Well Lock Status: Weather:                                |                  | 29600,35<br>NA<br>Cloudy 605 |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---|---------------------------------------------------------------------------|------------------|------------------------------|---|
| Gauge Date: Sounding Method: Stick Up/Down (ft):                                                                                                                                     | 10/16/98<br>Interface                         |   | Gauge Time: Measurement Ref: Well Diameter (in.):                         |                  | 0830<br>TOC,                 |   |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                                                                                                                                    | [0]17]98<br>— Tsco purp<br>— O                |   | Purge Time: Field Personnel: Well Mouth VOCs (ppm):                       |                  | Smi<br>BDA<br>6              |   |
| A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B)                                                                                                               | 7-96 WELLVO<br>1,48<br>6.28                   |   | OLUME D. Well Volume/ft (L): C. Well Volume (L) E. Three Well Volumes (L) |                  | -16<br>1,00<br>3.00          |   |
| Parameter  Time (min.)  Depth to Water (ft)  Purge Rate (I/min)  Volume Purged (L)  pH  Temperature (°C)  Conductivity (µmhos/cm)  Dissolved Oxygen (mg/L)  Turbidity (NTU)  eH (mV) | Beginning  0815  1.68   6.91  1b.34  31  5.49 | 1 | 2                                                                         | 3                | 4                            | 5 |
| Total Quantity of Water Remo<br>Samplers:<br>Sampling Date:<br>Sample Type:<br>Sample Bottle IDs:<br>Sample Parameters:<br>Comments and Observations:                                | NASBEFO                                       |   | 05                                                                        | 1330<br>DI<br>HC | D<br>L<br>Mn                 |   |



|                                  | <del></del>       |               |                                                     |                        |              |                                              |
|----------------------------------|-------------------|---------------|-----------------------------------------------------|------------------------|--------------|----------------------------------------------|
| Site Name:                       | fuel farm         |               | Project Number:                                     |                        | 2760).       | 35                                           |
| Well ID:                         | 12P-11            | <u>-</u>      | Well Lock Status:                                   |                        | NA           | <u>.                                    </u> |
| Well Condition:                  | GODZ-             |               | _ Weather:                                          | _                      | Survey       | 60'5                                         |
| <del></del>                      | <del>-</del>      |               |                                                     |                        |              |                                              |
| Gauge Date:                      | 616198            | <del></del>   | _ Gauge Time:                                       |                        | 0830         |                                              |
| Sounding Method:                 | Interface         | 0             | <ul><li>Gauge Time.</li><li>Measurement R</li></ul> |                        | 400          |                                              |
| Stick Up/Down (ft):              |                   |               | Well Diameter                                       | _                      | 3"           | -                                            |
| Stick Op/Down (it).              |                   |               | = Well Diameter                                     | (111.).                |              |                                              |
|                                  | 1 11-1/28         |               |                                                     |                        |              |                                              |
| Purge Date:                      |                   |               | _ Purge Time:                                       | _                      | - 5 mu       |                                              |
| Purge Method:                    | Isco pu           | wp            | Field Personnel                                     | : <u> </u>             | BUH          |                                              |
| Ambient Air VOCs (ppm):          |                   |               | _ Well Mouth VC                                     | OCs (ppm): _           | 4            |                                              |
|                                  |                   |               |                                                     |                        |              |                                              |
|                                  | - , -             | WELL V        | VOLUME                                              |                        |              |                                              |
| A. Well Depth (ft):              | 7.62              | 1.62          |                                                     | D. Well Volume/ft (L): |              |                                              |
| B. Depth to Water (ft):          | 0.6863            |               | C. Well Volume (L)                                  |                        | 0.74         |                                              |
| E. Liquid Depth (ft) (A-B)       | 11 1 7            |               | E. Three Well Volumes                               |                        | 222          |                                              |
|                                  |                   |               | =                                                   |                        |              |                                              |
|                                  |                   |               |                                                     |                        |              | <del>-</del>                                 |
| Parameter                        | Beginning         | 1             | 2                                                   | 3                      | 4            | 5                                            |
| Time (min.)                      | 0948              |               |                                                     |                        |              |                                              |
| Depth to Water (ft)              | 2.99              |               |                                                     |                        |              |                                              |
| Purge Rate (gpm)                 |                   |               |                                                     |                        |              |                                              |
| Volume Purged (gal)              |                   |               |                                                     |                        |              |                                              |
| рН                               | 10.75             |               |                                                     |                        |              |                                              |
| Temperature (°C)                 | 15,75             |               |                                                     |                        |              |                                              |
| Conductivity (µmhos/cm)          | 69                |               |                                                     |                        | <del></del>  |                                              |
| Dissolved Oxygen (mg/L)          | 2,23              | <del></del>   |                                                     |                        | <u> </u>     |                                              |
| Turbidity (NTU)                  | 0403              |               |                                                     |                        |              |                                              |
|                                  | 180               |               |                                                     |                        | <del> </del> | <u> </u>                                     |
| eH (mV)                          | 1707              |               |                                                     |                        |              | <u> </u>                                     |
|                                  |                   |               |                                                     |                        |              |                                              |
| Total Quantity of Wa             | ater Removed (L): | 4             |                                                     |                        |              |                                              |
| Samplers:                        | BAIRC             | Sampling Tim  | e (Start/End):                                      | 145                    | <u>S</u>     |                                              |
| Sampling Date:                   | 6118198           |               | ion Fluids Used:                                    | DI                     |              |                                              |
| Sample Type:                     | grab              | Sample Preser |                                                     | HCI                    |              |                                              |
| Sample Pype.  Sample Bottle IDs: | MASREC            | 904 1,24      |                                                     | ++                     |              |                                              |
| il -                             | VID               | rOH i         | WD TP                                               | Hara                   | Fe m         | <del></del>                                  |
| Sample Parameters:               |                   | CFIL O        | , ,                                                 | · 9,0                  | 7 7 7 700    |                                              |
| Comments and Obse                | rvations:         |               |                                                     |                        |              | <del></del>                                  |
|                                  |                   |               |                                                     |                        |              |                                              |
|                                  |                   |               |                                                     |                        |              |                                              |



| Site Name:                   | Fuel FARM | <del></del> | Project Number:           |                                       | 29600:         | 35            |
|------------------------------|-----------|-------------|---------------------------|---------------------------------------|----------------|---------------|
| Well ID:                     | WP-12     |             | Well Lock Status:         |                                       |                |               |
| Well Condition:              | good      |             | Weather:                  |                                       | clouds         | huniel        |
|                              |           |             |                           |                                       |                |               |
| Gauge Date:                  | 6/16/98   |             | Gauge Time:               |                                       | 0830           |               |
| Sounding Method:             | Interface | <u> </u>    | _ Measurement Re          | <br>ef:                               | Toc            | -             |
| Stick Up/Down (ft):          |           |             | Well Diameter (i          | <del></del> -                         | 2"             |               |
| Such op 20 m (cy)            |           |             |                           |                                       |                |               |
| Purge Date:                  | 6/17/98   |             | Purge Time:               |                                       | 5 min          |               |
| Purge Method:                | TSCO PU   | up          | Field Personnel:          | _                                     | BD4            |               |
| Ambient Air VOCs (ppm):      | 0.0       |             | Well Mouth VO             | Cs (ppm):                             | 0              |               |
| ranoient rai voos (ppin).    |           |             |                           |                                       |                |               |
|                              |           | WEIIV       | OLUME                     | <del></del>                           |                | <u> </u>      |
| A. Well Depth (ft):          | 7 50      |             | D. Well Volume/ft (L):    |                                       | -16            | ,             |
| B. Depth to Water (ft):      |           |             | C. Well Volume (L)        |                                       | 0.56           |               |
| E. Liquid Depth (ft) (A-B)   | 2 1/0     |             | E. Three Well Volumes (L) |                                       | 1.67           |               |
| E. Elquid Dopai (ii) (i 1 b) |           |             |                           |                                       |                |               |
|                              |           |             | <del></del> _             |                                       | <del></del>    |               |
| Parameter                    | Beginning | 1           | 2                         | 3                                     | 4              | 5             |
| Time (min.)                  | 1045      |             |                           |                                       | <b>↓</b>       | <del>  </del> |
| Depth to Water (ft)          | 4-31      |             | <u> </u>                  |                                       | <u> </u>       |               |
| Purge Rate (l/min)           |           |             | <b>-</b>                  |                                       | <del>-  </del> | ļ             |
| Volume Purged (L)            |           |             | <u> </u>                  |                                       | <u> </u>       | <u> </u>      |
| рН                           | 6.29      | •           | <b></b>                   |                                       | <b></b>        | <u> </u>      |
| Temperature (°C)             | 15.78     |             |                           |                                       |                | <u> </u>      |
| Conductivity (µmhos/cm)      | 168       |             |                           |                                       | <b>_</b>       | <del> </del>  |
| Dissolved Oxygen (mg/L)      | 3.87      |             |                           | · · · · · · · · · · · · · · · · · · · |                |               |
| Turbidity (NTU)              | NA        |             |                           |                                       |                |               |
| eH (mV)                      | 126       |             |                           |                                       |                |               |
|                              |           |             |                           |                                       |                |               |
| Total Quantity of Water Remo | ved (L):  | 4           |                           |                                       |                |               |
| Samplers:                    | BDA       | Sampline    | Time (Start/End):         |                                       | 045            |               |
| Sampling Date:               | 6/18/98   |             | nination Fluids Used      | d:                                    | )I             |               |
| Sample Type:                 | Grab      |             | reservatives:             |                                       | tcu            |               |
| Sample Bottle IDs:           | NASBFFO   |             |                           |                                       |                |               |
| Sample Parameters:           | VOC TPH   |             | 0.1.5                     | Fe Ma                                 |                |               |
| Comments and Observations:   |           | <del></del> |                           | 7                                     | <del></del>    |               |
| Comments and Observations:   |           |             |                           |                                       |                | <del></del>   |
|                              |           |             |                           |                                       |                |               |



| Site Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fuel Farm     |                                        | Project Number:           |           | 29600.35    |             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|---------------------------|-----------|-------------|-------------|--|
| Well ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WP-13         |                                        | Weil Lock Status:         |           | NA          |             |  |
| Well Condition:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Broken-Ber    | <u> </u>                               | _ Weather:                | -         | cloudy      | hunid       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1115.25       |                                        |                           |           |             |             |  |
| Gauge Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6/16/98 BA *  |                                        | _ Gauge Time:             | -         |             | <del></del> |  |
| Sounding Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>      | <del> </del>                           | _ Measurement R           | _         |             |             |  |
| Stick Up/Down (ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                        | _ Well Diameter (in.):    |           |             |             |  |
| Purge Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA            |                                        | Purge Time:               |           |             |             |  |
| Purge Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                        | Field Personnel:          | _         | BDH         |             |  |
| Ambient Air VOCs (ppm):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0           |                                        | Well Mouth VC             | Cs (ppm): | 0.0         |             |  |
| Company of the compan |               | WEII                                   | OLUME                     |           |             |             |  |
| A. Well Depth (ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.72 * WELL V |                                        | D. Well Volume            | e/ft (L): |             |             |  |
| B. Depth to Water (ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                        | C. Well Volume            | • •       |             |             |  |
| E. Liquid Depth (ft) (A-B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                        | E. Three Well Volumes (L) |           |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                           |           |             |             |  |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Beginning     | 1                                      | 2                         | 3         | 4           | 5           |  |
| Time (min.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                        |                           |           |             |             |  |
| Depth to Water (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                        |                           |           |             |             |  |
| Purge Rate (Vmin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                        |                           |           |             |             |  |
| Volume Purged (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                        |                           | <u> </u>  |             |             |  |
| рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | ,                                      |                           |           |             |             |  |
| Temperature (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                        | <u> </u>                  |           | _           |             |  |
| Conductivity (µmhos/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                        |                           |           |             |             |  |
| Dissolved Oxygen (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                        |                           |           |             |             |  |
| Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                           |           |             |             |  |
| eH (mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                        |                           |           |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                           |           |             |             |  |
| Total Quantity of Water Rem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oved (L):     | ······································ |                           |           |             |             |  |
| Samplers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                        | Time (Start/End):         |           |             |             |  |
| Sampling Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del></del>   |                                        | nination Fluids Use       | :d:       | <del></del> | <del></del> |  |
| Sample Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | Sample Pr                              | reservatives:             |           | <del></del> | <del></del> |  |
| Sample Bottle IDs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | <del></del>                            |                           |           |             |             |  |
| Sample Parameters:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                        |                           |           | - 11 11     |             |  |
| Comments and Observations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *unable to    | guay                                   | e cr Sou                  | plo -     | 2" well     | point       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                           |           |             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                           |           |             |             |  |



| Site Name:<br>Well ID:<br>Well Condition:                              | WP-14                |           | Project Number: Well Lock Status: Weather:           |             | not locked<br>Some sun 605 |   |
|------------------------------------------------------------------------|----------------------|-----------|------------------------------------------------------|-------------|----------------------------|---|
| Gauge Date: Sounding Method: Stick Up/Down (ft):                       | GIGGS<br>Interfac    | 0         | Gauge Time: Measurement R Well Diameter (            | _           | 0830<br>toC<br>2"          |   |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                      | Isco purp.           |           | Purge Time: Field Personnel: Well Mouth VO           | _           | 5 min<br>BDA<br>7          |   |
| A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B) | 7.97<br>2.82<br>5.15 | WELLV     | OLUME  D. Well Volume C. Well Volume E. Three Well V | e(L) _      | ./6<br>0.82<br>2.47        |   |
| . Parameter                                                            | Beginning            | 1         | 2                                                    | 3           | 4                          | 5 |
| Time (min.)                                                            | 0800                 |           |                                                      |             |                            |   |
| Depth to Water (ft)                                                    | 2.82                 |           |                                                      |             |                            |   |
| Purge Rate (l/min)                                                     |                      |           |                                                      |             |                            |   |
| Volume Purged (L)                                                      |                      |           | Ĺ                                                    |             |                            |   |
| рН                                                                     | 6.95                 |           |                                                      |             |                            |   |
| Temperature (°C)                                                       | 16.23                |           | <u> </u>                                             |             |                            |   |
| Conductivity (µmhos/cm)                                                | 5b                   |           | <u> </u>                                             |             |                            |   |
| Dissolved Oxygen (mg/L)                                                | 6.82                 |           | ļ                                                    |             |                            |   |
| Turbidity (NTU)                                                        | <u> </u>             | _         | 1                                                    |             |                            |   |
| eH (mV)                                                                | 257                  |           | <u></u>                                              |             |                            |   |
| Total Quantity of Water Remo                                           | oved (L): 42611      | 101.+=    | 4                                                    |             |                            |   |
| Samplers:                                                              | BARC                 | Sampling  | Time (Start/End):                                    | 132         | 0-1325                     |   |
| Sampling Date:                                                         | 6/18/98              | Decontam  | ination Fluids Use                                   | d: <u>D</u> |                            |   |
| Sample Type:                                                           | grah                 | Sample Pr | eservatives:                                         | H           | <i>(</i>                   |   |
| Sample Bottle IDs:                                                     | UNASBE               | F04 W     | r004                                                 | ,           | <u>;</u>                   | i |
| Sample Parameters:                                                     | VOC, TE              | H gro     | TPHO                                                 | ro F        | e, ma                      |   |
| Comments and Observations:                                             |                      | <u> </u>  | ,<br>                                                |             | 1                          |   |
|                                                                        |                      |           |                                                      |             |                            |   |



| Site Name:<br>Well ID:<br>Well Condition:                                                                                                                                            | Huel farm<br>WP-15<br>apod                     |          | Project Number:  Well Lock Status:  Weather:        |           | 29600,35<br>NA<br>Surny 605 |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------|-----------------------------------------------------|-----------|-----------------------------|---|
| Gauge Date: Sounding Method: Stick Up/Down (ft):                                                                                                                                     | 10/16/98<br>Interface                          |          | Gauge Time:  Measurement Ref:  Well Diameter (in.): |           | 0830<br>TOC.                |   |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                                                                                                                                    | 10/17/98<br>Toco pump<br>0                     |          | Purge Time: Field Personnel: Well Mouth VOCs (ppm): |           | 5min<br>BDA<br>3            |   |
| A. Well Depth (ft):  B. Depth to Water (ft):  E. Liquid Depth (ft) (A-B)                                                                                                             | 7.69<br>3.16<br>4.53                           |          | OLUME D. Well Volume C. Well Volume E. Three Well V | e(L) _    | 16<br>0.72<br>2.17          |   |
| Parameter  Time (min.)  Depth to Water (ft)  Purge Rate (l/min)  Volume Purged (L)  pH  Temperature (°C)  Conductivity (µmhos/cm)  Dissolved Oxygen (mg/L)  Turbidity (NTU)  eH (mV) | Beginning 6930 3.16                            |          | 2                                                   | 3         | 4                           | 5 |
| Total Quantity of Water Remo<br>Samplers:<br>Sampling Date:<br>Sample Type:<br>Sample Bottle IDs:<br>Sample Parameters:<br>Comments and Observations:                                | DAIRC BAIRC BAIRC BAIRC BAIRC NASBFF04 VOC, TE | Decontam | Time (Start/End): ination Fluids Use eservatives:   | d: I<br>H | 440<br>CL<br>Fe Mn          |   |



| Site Name: Well ID: Well Condition:                                                                               | Free fo<br>WP-16R                                          | um                                                    | Project Number:  Well Lock Status:  Weather:                             |                           | 29600.33<br>NA<br>Suring 60'5 |   |  |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|---------------------------|-------------------------------|---|--|
| wen condition.                                                                                                    |                                                            |                                                       | Weather.                                                                 |                           |                               |   |  |
| Gauge Date:<br>Sounding Method:<br>Stick Up/Down (ft):                                                            | Interface.                                                 |                                                       | Gauge Time:<br>Measurement R<br>Well Diameter                            | _                         | 0830<br>TDC<br>3/41"          |   |  |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                                                                 | Tsco pump                                                  |                                                       | Purge Time: Field Personnel: Well Mouth VOCs (ppm):                      |                           | 5 mi<br>BDA<br>NA-open pipe   |   |  |
| A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B)                                            | WELL VO                                                    |                                                       | OLUME  D. Well Volume/ft (L):  C. Well Volume (L)  E. Three Well Volumes |                           | 0.04                          |   |  |
|                                                                                                                   |                                                            |                                                       |                                                                          |                           |                               |   |  |
| Parameter                                                                                                         | Beginning                                                  | 1                                                     | 2                                                                        | 3                         | 4                             | 5 |  |
| Time (min.)                                                                                                       | 1030                                                       |                                                       |                                                                          |                           |                               |   |  |
| Depth to Water (ft)                                                                                               | 14.02                                                      |                                                       |                                                                          |                           |                               |   |  |
| Purge Rate (gpm)                                                                                                  |                                                            |                                                       |                                                                          |                           |                               |   |  |
| Volume Purged (gal)                                                                                               |                                                            |                                                       |                                                                          |                           |                               |   |  |
| рН                                                                                                                | 8.81                                                       |                                                       |                                                                          |                           |                               | - |  |
| Temperature (°C)                                                                                                  | 11.87                                                      |                                                       |                                                                          |                           |                               |   |  |
| Conductivity (µmhos/cm)                                                                                           | 391                                                        |                                                       |                                                                          |                           |                               |   |  |
| Dissolved Oxygen (mg/L)                                                                                           | 253                                                        |                                                       |                                                                          |                           |                               | - |  |
| Turbidity (NTU)                                                                                                   |                                                            |                                                       |                                                                          |                           |                               |   |  |
| eH (mV)                                                                                                           | 60                                                         | 1                                                     | <del> </del>                                                             |                           |                               |   |  |
| Total Quantity of Wasamplers: Sampling Date: Sample Type: Sample Bottle IDs: Sample Parameters: Comments and Obse | ater Removed (L):  BAIRL  6/18/98  9/205  NASBFFO  VOC, TY | Sampling Time Decontamination Sample Preserved 4 (OP) | on Fluids Used:                                                          | 164<br>DI<br>HC<br>70, Fe | 5<br>i-<br>, Mn               |   |  |



| Site Name:<br>Well ID:<br>Well Condition:                                                                                                | fiel fair<br>WP 17R<br>grow                   |                                                                                            | Project Number:<br>Well Lock Status:<br>Weather:                         |                                                     | 29600.<br>NA<br>Sunny | 35<br>60'5 |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------|-----------------------|------------|
| Gauge Date: Sounding Method: Stick Up/Down (ft):                                                                                         | 6/16/98<br>Interface                          | 6/16/98<br>Interface                                                                       |                                                                          | ef:<br>(in.):                                       | 0830<br>TDC<br>1"     |            |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                                                                                        | 6/17/98<br>Iso pun                            | <del>- + + +</del>                                                                         |                                                                          | Purge Time: Field Personnel: Well Mouth VOCs (ppm): |                       | pen pipe   |
| A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B)                                                                   | WELL V                                        |                                                                                            | OLUME  D. Well Volume/ft (L):  C. Well Volume (L)  E. Three Well Volumes |                                                     | 0.04                  |            |
| Parameter                                                                                                                                | Beginning                                     | 1                                                                                          | 2                                                                        | 3                                                   | 4                     | 5          |
| Time (min.)  Depth to Water (ft)  Purge Rate (gpm)  Volume Purged (gal)                                                                  | 1230<br>4.80<br>-<br>-<br>6.93                |                                                                                            |                                                                          |                                                     |                       |            |
| pH Temperature (°C)                                                                                                                      | 12.37                                         |                                                                                            |                                                                          |                                                     |                       |            |
| Conductivity (µmhos/cm)  Dissolved Oxygen (mg/L)                                                                                         | 140<br>2.84                                   |                                                                                            |                                                                          |                                                     |                       |            |
| Turbidity (NTU)                                                                                                                          | 38                                            |                                                                                            |                                                                          | -                                                   |                       |            |
| Total Quantity of Wa<br>Samplers:<br>Sampling Date:<br>Sample Type:<br>Sample Bottle IDs:<br>Sample Parameters:<br>Comments and Observed | BAIRC<br>blisigs<br>grail<br>NASBFF<br>VOC, T | Sampling Time Decontamination Sample Preserv OUT WP UP | on Fluids Used:                                                          |                                                     | 30<br>C. Mn           |            |



| Site Name:<br>Well ID:<br>Well Condition:                                                                                           | fuel fur<br>Lixe - 18R<br>good                |      | Project Numbe Well Lock Stat Weather:               |          | 29/090.3<br>NA<br>Sunny   | 35<br>(00'5 |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|-----------------------------------------------------|----------|---------------------------|-------------|
| Gauge Date: Sounding Method: Stick Up/Down (ft):                                                                                    | 6/16/98<br>Interfa                            | 'L   | Gauge Time: Measurement I Well Diameter             |          | 0830<br>TOC               |             |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                                                                                   | [0] 17  98<br>Isco Pu                         | no . | Purge Time: Field Personne Well Mouth V             | <u> </u> | 5 min<br>BDA<br>NA - open | , pipe      |
| A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B)                                                              | 2.35                                          | WELL | VOLUME  D. Well Volum  C. Well Volum  E. Three Well | ne (L)   | 0.04                      |             |
| Parameter                                                                                                                           | Beginning                                     | 1    | 2                                                   | 3        | 4                         | 5           |
| Time (min.)                                                                                                                         | 1530                                          |      |                                                     |          |                           |             |
| Depth to Water (ft)                                                                                                                 | 2,35                                          |      |                                                     |          |                           |             |
| Purge Rate (gpm)                                                                                                                    |                                               |      |                                                     |          |                           |             |
| Volume Purged (gal)                                                                                                                 |                                               |      |                                                     |          |                           |             |
| рН                                                                                                                                  | 6.54                                          |      | <u> </u>                                            | <u> </u> |                           |             |
| Temperature (°C)                                                                                                                    | 14.07                                         |      | <u> </u>                                            |          |                           |             |
| Conductivity (µmhos/cm)                                                                                                             | 136                                           |      | <u></u>                                             |          |                           | ·           |
| Dissolved Oxygen (mg/L)                                                                                                             | 10.61                                         |      |                                                     |          |                           |             |
| Turbidity (NTU)                                                                                                                     |                                               |      |                                                     |          |                           |             |
| eH (mV)                                                                                                                             | 1195                                          |      |                                                     |          |                           |             |
| Total Quantity of W<br>Samplers:<br>Sampling Date:<br>Sample Type:<br>Sample Bottle IDs:<br>Sample Parameters:<br>Comments and Obse | BAIRC<br>GIISIAS<br>Grab<br>NASBFFO<br>VOC, I |      |                                                     | DI<br>HC | 30<br>2L<br>7, Ma         |             |



| WP-20<br>Booken pi |             |                           | _ Project Number:                                                                                     |                                                                                                                                                            | 29600.35                                                                                                                                                        |  |  |
|--------------------|-------------|---------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Broken pi          |             | Well Lock State           | us:                                                                                                   | NA                                                                                                                                                         |                                                                                                                                                                 |  |  |
|                    | re          | _ Weather:                |                                                                                                       | cloudy                                                                                                                                                     | hunid                                                                                                                                                           |  |  |
| -6/16/9806         |             | _ Gauge Time:             |                                                                                                       | <del></del>                                                                                                                                                |                                                                                                                                                                 |  |  |
|                    |             | Measurement F             | Ref:                                                                                                  |                                                                                                                                                            |                                                                                                                                                                 |  |  |
|                    |             | <del></del>               |                                                                                                       |                                                                                                                                                            |                                                                                                                                                                 |  |  |
|                    |             |                           |                                                                                                       |                                                                                                                                                            |                                                                                                                                                                 |  |  |
|                    |             | Purge Time:               | _                                                                                                     |                                                                                                                                                            |                                                                                                                                                                 |  |  |
|                    |             |                           |                                                                                                       |                                                                                                                                                            |                                                                                                                                                                 |  |  |
| 0.0                |             | _ Well Mouth VO           | OCs (ppm):                                                                                            | 0.0                                                                                                                                                        |                                                                                                                                                                 |  |  |
| <u> </u>           | WELL '      | VOLUME                    |                                                                                                       | 114 12                                                                                                                                                     | وفردند المستوا المستوا                                                                                                                                          |  |  |
|                    |             |                           | e/ft (L):                                                                                             |                                                                                                                                                            | ···                                                                                                                                                             |  |  |
|                    |             | _ C. Well Volum           | e (L)                                                                                                 |                                                                                                                                                            |                                                                                                                                                                 |  |  |
|                    |             | E. Three Well Volumes (L) |                                                                                                       |                                                                                                                                                            |                                                                                                                                                                 |  |  |
| A-44-7-10          |             |                           | <u> </u>                                                                                              |                                                                                                                                                            | -                                                                                                                                                               |  |  |
| Beginning          | 1           | 2                         | 3                                                                                                     | 4                                                                                                                                                          | 5                                                                                                                                                               |  |  |
|                    |             |                           | <u> </u>                                                                                              |                                                                                                                                                            |                                                                                                                                                                 |  |  |
|                    |             | 1                         | <u> </u>                                                                                              |                                                                                                                                                            |                                                                                                                                                                 |  |  |
|                    |             |                           | <u> </u>                                                                                              |                                                                                                                                                            |                                                                                                                                                                 |  |  |
|                    |             |                           | ļ                                                                                                     |                                                                                                                                                            |                                                                                                                                                                 |  |  |
|                    |             |                           |                                                                                                       |                                                                                                                                                            |                                                                                                                                                                 |  |  |
|                    | <del></del> |                           | <u> </u>                                                                                              |                                                                                                                                                            |                                                                                                                                                                 |  |  |
|                    |             |                           | <u> </u>                                                                                              |                                                                                                                                                            |                                                                                                                                                                 |  |  |
|                    |             |                           |                                                                                                       |                                                                                                                                                            |                                                                                                                                                                 |  |  |
|                    |             |                           |                                                                                                       |                                                                                                                                                            |                                                                                                                                                                 |  |  |
|                    |             |                           |                                                                                                       |                                                                                                                                                            |                                                                                                                                                                 |  |  |
|                    |             | WELL                      | Purge Time:  Field Personnel  Well Mouth VO  WELL VOLUME  D. Well Volum  C. Well Volum  E. Three Well | Well Diameter (in.):  Purge Time: Field Personnel: Well Mouth VOCs (ppm):  WELL VOLUME D. Well Volume/ft (L): C. Well Volume (L) E. Three Well Volumes (L) | Well Diameter (in.):  Purge Time:  Field Personnel:  Well Mouth VOCs (ppm):  WELL VOLUME  D. Well Volume/ft (L):  C. Well Volume (L)  E. Three Well Volumes (L) |  |  |



| Site Name: Well ID: Well Condition:                                    | 101<br>101<br>A1 | 101 fui<br>102<br>102 |                                       | Project Number:<br>Well Lock Status<br>Weather:      |             | 29600.<br>NA<br>Sunny  | 32<br>505 |
|------------------------------------------------------------------------|------------------|-----------------------|---------------------------------------|------------------------------------------------------|-------------|------------------------|-----------|
| Gauge Date: Sounding Method: Stick Up/Down (ft):                       | _lv              | 116/98<br>terta       | AL                                    | Gauge Time:<br>Measurement Re<br>Well Diameter (i    |             | 0830<br>TOC<br>1"      |           |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                      |                  | 117198<br>sco Pun     | φ                                     | Purge Time:<br>Field Personnel:<br>Well Mouth VO     | Cs (ppm):   | 5 pur<br>BDA<br>NA · O | pen pine  |
| A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B) |                  | 1.96                  | WELL V                                | OLUME  D. Well Volume C. Well Volume E. Three Well V | (L) _       | 0.0                    | 1         |
| Parameter                                                              |                  | Beginning             | 1                                     | 2                                                    | 3           | 4                      | 5         |
| Time (min.)                                                            | <u></u>          | 1530                  |                                       |                                                      |             |                        |           |
| Depth to Water (ft)                                                    |                  | 4.96                  |                                       |                                                      |             |                        |           |
| Purge Rate (l/min)                                                     |                  |                       |                                       |                                                      | <u> </u>    |                        |           |
| Volume Purged (L)                                                      |                  |                       |                                       |                                                      | ·           |                        |           |
| pH                                                                     |                  | 4.08                  | · · · · · · · · · · · · · · · · · · · |                                                      |             |                        | <u> </u>  |
| Temperature (°C)                                                       |                  | 12.60                 |                                       |                                                      |             |                        |           |
| Conductivity (µmhos/cm)                                                |                  | 101                   |                                       |                                                      |             |                        |           |
| Dissolved Oxygen (mg/L)                                                |                  | 2.51                  |                                       |                                                      |             |                        |           |
| Turbidity (NTU)                                                        |                  |                       |                                       |                                                      |             |                        |           |
| eH (mV)                                                                |                  | 136                   |                                       |                                                      |             |                        |           |
| Total Quantity of Water Remo                                           | ved (I ):        | 4                     |                                       |                                                      |             |                        |           |
| Samplers:                                                              | BA               | FIRC                  | Sampling T                            | ime (Start/End):                                     | 17          | t5                     |           |
| Sampling Date:                                                         | 101              | 14/98                 |                                       | nation Fluids Used                                   | 1. D/       |                        |           |
| Sample Type:                                                           | an               | Wb                    | Sample Pre                            |                                                      | H.C         |                        |           |
| Sample Bottle IDs:                                                     | MA               | KBFFA                 | 4 (DPDI                               | 9                                                    |             |                        |           |
| Sample Parameters:                                                     | VA               | C TP                  | H don                                 | 4PH OX                                               | m Fe        | Ma                     | <u>-</u>  |
| Comments and Observations:                                             |                  |                       | ,                                     | <del>" ' '                                 </del>    | <del></del> | <del>-/</del>          |           |
| Comments and Observations.                                             |                  |                       |                                       |                                                      |             |                        |           |
|                                                                        |                  |                       |                                       |                                                      |             |                        |           |



| Site Name:                   | Fuel Farm    |              | Project Number:                                  |             | 29600.35     |                                                  |  |
|------------------------------|--------------|--------------|--------------------------------------------------|-------------|--------------|--------------------------------------------------|--|
| Well ID:                     | WP-22        |              | _ Well Lock Statu                                | s:          | NA           |                                                  |  |
| Well Condition:              | good         |              | _ Weather:                                       |             | cloudy       | hunid                                            |  |
|                              |              |              |                                                  |             |              | - · · · · · · · · · · · · · · · · · · ·          |  |
| Gauge Date:                  | 6/16/98      |              | _ Gauge Time:                                    |             | 835          |                                                  |  |
| Sounding Method:             | Slover Ind   | icuter       | _ Measurement R                                  | ef:         | TOC          |                                                  |  |
| Stick Up/Down (ft):          |              |              | Well Diameter (                                  | in.):       | 100          |                                                  |  |
|                              | <del></del>  |              |                                                  |             |              |                                                  |  |
| Purge Date:                  | 6/18/96      |              | Purge Time:                                      |             | 5min         |                                                  |  |
| Purge Method:                | Isco pm      | SP           | Field Personnel:                                 |             | BDH          | , , , , , , , , , , , , , , , , , , ,            |  |
| Ambient Air VOCs (ppm):      | 0.0          |              | Well Mouth VO                                    |             | Na-          | gren pire.                                       |  |
|                              |              | <del></del>  |                                                  |             |              |                                                  |  |
|                              |              | WELL V       | OLUME                                            |             |              | ,                                                |  |
| A. Well Depth (ft):          |              |              | D. Well Volume                                   | e/ft (L):   | 0.04         |                                                  |  |
| B. Depth to Water (ft):      | 3.89         |              | . C. Well Volume                                 |             | FURLA        |                                                  |  |
| E. Liquid Depth (ft) (A-B)   |              |              | E. Three Well V                                  |             |              |                                                  |  |
| L                            |              |              | <u>-</u> -                                       |             |              |                                                  |  |
| Parameter                    | Beginning    | 1            | 2                                                | 3           | T 4          | 5                                                |  |
|                              |              |              |                                                  |             | + -          | =                                                |  |
| Time (min.)                  | 3.89         |              | <del> </del>                                     |             |              |                                                  |  |
| Depth to Water (ft)          | 3.67         |              | <del> </del>                                     |             |              |                                                  |  |
| Purge Rate (l/min)           |              |              | <del> </del>                                     | L           | _            | -                                                |  |
| Volume Purged (L)            | 11.25        |              | <del> </del>                                     |             | <del></del>  |                                                  |  |
| pH Temperature (°C)          | 12.61        |              | <del> </del>                                     | <del></del> | <del></del>  | <del>-    </del>                                 |  |
| Conductivity (µmhos/cm)      | 1041         |              | 1                                                |             | <del></del>  | -                                                |  |
| Dissolved Oxygen (mg/L)      | 3.00         | <del></del>  | <del>                                     </del> |             |              | <del>                                     </del> |  |
| Turbidity (NTU)              |              | <del></del>  |                                                  | ,           |              |                                                  |  |
|                              | -51          |              | <del> </del>                                     |             |              |                                                  |  |
| eH (mV)                      | 1311         |              | <u> </u>                                         |             |              | <del></del>                                      |  |
| The 10 main CW . P           | 41           |              | <del></del>                                      |             |              | i                                                |  |
| Total Quantity of Water Remo | •            | G: "         | TP: (C) (T) 1                                    | 1           | 110 - 1115   |                                                  |  |
| Samplers:                    | BDA          |              | Time (Start/End):                                |             |              |                                                  |  |
| Sampling Date:               | 6/18/98      | <del></del>  | ination Fluids Used                              | 1:          | A ile        |                                                  |  |
| Sample Type:                 | grab         |              | eservatives:                                     |             | HCU          |                                                  |  |
| Sample Bottle IDs:           | NASB PFOY    |              | Dro F                                            | e Mn        | <del></del>  |                                                  |  |
| Sample Parameters:           | VOC, IPH /SK | , 17 M       | VICO P                                           | - 1- mt     |              |                                                  |  |
| Comments and Observations:   |              | <del> </del> | <del></del>                                      |             |              | ·····                                            |  |
|                              |              |              |                                                  |             | <del> </del> |                                                  |  |
|                              | <del></del>  |              |                                                  |             |              |                                                  |  |



| Site Name: Well ID: Well Condition:                                    | 0/1 fuel farm<br>mw-44<br>good |                    | Project Number: Well Lock Status: Weather:           |              | 10CKLD<br>LOCKLD<br>Cloudy 505 |               |
|------------------------------------------------------------------------|--------------------------------|--------------------|------------------------------------------------------|--------------|--------------------------------|---------------|
| Gauge Date: Sounding Method: Stick Up/Down (ft):                       | 6/28/98<br>Interface           |                    | Gauge Time:<br>Measurement Ro<br>Well Diameter (i    |              | 0740<br>70c<br>2"              |               |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                      | 6/18/98<br>grand 805           |                    | Purge Time:<br>Field Personnel:<br>Well Mouth VO     | Cs (ppm):    | 743 -0<br>BATRC<br>0           | 3.20          |
| A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B) | 15.74<br>2.66<br>13.08         | WELL V             | OLUME  D. Well Volume C. Well Volume E. Three Well V | :(L)         | 0.16<br>2.69<br>6.28           |               |
| Parameter                                                              | Beginning                      | 1                  | 2                                                    | 3            | 4                              | 5             |
| Time (min.)                                                            | 751                            | 756                | 801                                                  | 806          | 811                            | 86            |
| Depth to Water (ft)                                                    | 2.66                           | 2.23               | 2,22                                                 | 2,32         | 2,30                           | 2.30          |
| Purge Rate (l/min)                                                     |                                | 2                  | 2                                                    |              |                                |               |
| Volume Purged (L)                                                      | (5gal)                         | <b>3</b> 0<br>5.81 | 5,80                                                 | <b>5.81</b>  | 55<br>5.81                     | 60            |
| pH (8C)                                                                |                                | 14,20              | 14 30                                                | 111.05       | 14 00                          | 0.01          |
| Temperature (°C) Conductivity (µmhos/cm)                               | 14.19                          | 63                 | 17.X)                                                | 52           | 17.00                          | 19,00         |
| Dissolved Oxygen (mg/L)                                                | 2.35                           | 192                | 177                                                  | 1.81         | 1.60                           | 154           |
| Turbidity (NTU)                                                        | 565                            | 419                | 274                                                  | 271          | 332                            | 423           |
|                                                                        | 113                            | 101-               | 42                                                   | 38           | 44                             | 38            |
| eH (mV)                                                                |                                |                    | 1.7.                                                 |              | 770                            |               |
| Total Quantity of Water Remo                                           | oved (L):                      | 50                 |                                                      | a            | 10 0-1                         | <del></del>   |
| Samplers:                                                              | KUDA                           |                    | Time (Start/End):                                    | - 6          | 45 - 950                       | <u> </u>      |
| Sampling Date:                                                         | 0.000                          | <del></del>        | nation Fluids Use                                    | d: <u>17</u> | 7                              |               |
| Sample Type:                                                           | PAINSOFF                       | <del></del>        | eservatives:                                         | JASB FFC     | 4 mwx                          | <del>~/</del> |
| Sample Bottle IDs:                                                     | 1/06 701                       | 1 04 mu)           | - A //                                               |              | TIMEXI                         |               |
| Sample Parameters:                                                     | VOC, 187                       | 10                 | TPH dro                                              |              | 01                             |               |
| Comments and Observations:                                             | * unable                       | to pury            | s Shouer                                             | then 1       | R/min                          | <del></del>   |
|                                                                        |                                | <del></del>        |                                                      |              |                                |               |



| Site Name: | old full farm | Project Number:  | 29600.35 | . Date: | 6/18/98 |  |
|------------|---------------|------------------|----------|---------|---------|--|
| Well ID:   | mw-44         | Field Personnel: | BAIRC    |         |         |  |

| Parameter                 | 6     | 7     | 8     | 9     | 10    | 11    |
|---------------------------|-------|-------|-------|-------|-------|-------|
| Time (min.)               | 821   | 826   | 831   | 836   | 845   | 850   |
| Depth to Water (ft)       | 2,29  | 2.29  | 278   | 2.28  | 2,25  | 2.29  |
| Purge Rate (gpm) 1/min Bt |       | 1     | 1     |       | İ     | 1     |
| Volume Purged (get) L B   | 65    | 70    | 75    | 80    | 85    | 90    |
| рН                        | 5,81  | 5.81  | 5.81  | 5-81  | 5,77  | 5.82  |
| Temperature (°C)          | 14.08 | 14.17 | 14.21 | 14.26 | 14.35 | 14.22 |
| Conductivity (µmhos/cm)   | 60    | 60    | 61    | 61    | 61    | 61    |
| Dissolved Oxygen (mg/L)   | 1.39  | 1,52  | 1,44  | 1.52  | 1.49  | 1.37  |
| Turbidity (NTU)           | 200   | 238   | 190   | 190   | 207   | 140   |
| eH (mV)                   | 35    | 35    | 34    | 35    | 37    | 25    |

| Parameter                 | 12    | 13    | 14    | 15    | 16    | 17    |
|---------------------------|-------|-------|-------|-------|-------|-------|
| Time (min.)               | 855   | 900   | 905   | 910   | 915   | 920   |
| Depth to Water (ft)       | 2.29  | 2,29  | 2,29  | 2,29  | 2,25  | 2,25  |
| Purge Rate (gpm) L/Min Bt | 1     | /     | 1     |       | 1     | 1     |
| Volume Purged (gat) 2 4   | 95    | 100   | 105   | 110   | 115   | 120   |
| pH                        | 5,81  | 5.81  | 5,81  | 5,82  | 5.81  | 5.82  |
| Temperature (°C)          | 14.26 | 14,29 | 14.60 | 14.64 | 14,66 | 14.67 |
| Conductivity (µmhos/cm)   | 61    | 61    | 62    | 61    | 61    | 62    |
| Dissolved Oxygen (mg/L)   | 1.51  | 1.49  | 1.41  | 1.48  | 1,39  | 1,38  |
| Turbidity (NTU)           | 126   | 126   | 86    | 95    | 99    | 116   |
| eH (mV)                   | 25    | 24    | 30    | 30    | 32    | 31    |

| Comments and Observations: |     | · |             |        |   |  |
|----------------------------|-----|---|-------------|--------|---|--|
|                            | ··· |   |             |        |   |  |
|                            |     |   |             | - 1 18 |   |  |
|                            |     |   |             |        |   |  |
|                            | ·-  |   |             |        | • |  |
|                            |     |   | <del></del> |        |   |  |



| Site Name: DH Tuel 9 Well ID: MW-44 |       | roject Number:<br>eld Personnel: | 39600.<br>BA-1RC | 35 Date | e: <u>6/18</u> | 198 |
|-------------------------------------|-------|----------------------------------|------------------|---------|----------------|-----|
|                                     |       |                                  |                  |         |                |     |
| Parameter                           | 6     | 7                                | 88               | 9       | 10             | 11  |
| Time (min.)                         | 925   | 930                              | 935              | 940     | 945            |     |
| Depth to Water (ft)                 | 2.28  | 2,78                             | 2.29             | 2.29    | 2.28           |     |
| Purge Rate (L/min)                  |       | 1                                | 1                | 1       | 1              |     |
| Volume Purged (L)                   | 125   | 130                              | 135              | 140     | 145            |     |
| рН                                  | 5.82  | 5.82                             | 5,81             | 5,81    | 5.81           |     |
| Temperature (°C)                    | 14.37 | 14.22                            | 14,29            | 14.31   | 14.35          |     |
| Conductivity (µmhos/cm)             | 61    | 61                               | 62               | 61      | 61             |     |
| Dissolved Oxygen (mg/L)             | 2.22  | 1.48                             | 1,40             | 1.40    | 1.40           |     |
| Turbidity (NTU)                     | 113   | 96                               | 115              | 189     | 546®           |     |
| eH (mV)                             | 24    | 24                               | 23               | 23      | 23             |     |

| Parameter               | 12 | 13 | 14 | 15 | 16 | 17 |
|-------------------------|----|----|----|----|----|----|
| Time (min.)             |    |    |    |    |    |    |
| Depth to Water (ft)     |    |    |    |    |    |    |
| Purge Rate (L/min)      |    |    |    |    |    |    |
| Volume Purged (L)       |    |    |    |    |    |    |
| рН                      |    |    |    |    |    |    |
| Temperature (°C)        |    |    |    |    |    |    |
| Conductivity (µmhos/cm) |    |    |    |    |    |    |
| Dissolved Oxygen (mg/L) |    |    |    |    |    |    |
| Turbidity (NTU)         |    |    |    |    |    |    |
| eH (mV)                 |    |    |    |    |    |    |

| Comments and Observations:             |                          |
|----------------------------------------|--------------------------|
|                                        | (12 VOA VIGIS 4 amber 1) |
| @ Water from Cluis clar                | On Cleaning flow cell    |
| turbidy reading at 90 turbidity increa | are in cup.              |
| 7                                      |                          |
|                                        |                          |



| Site Name:                             | old fuel for | rm                    | Project Number:    |                     | 29600,35     |             |
|----------------------------------------|--------------|-----------------------|--------------------|---------------------|--------------|-------------|
| Well ID:                               | mw-49        |                       | Well Lock Status:  |                     | ocked        |             |
| Well Condition:                        | 9002         |                       | . Weather:         |                     | cloudy       | 505         |
|                                        |              |                       |                    |                     |              |             |
| Gauge Date:                            | 6/17/98      |                       | Gauge Time:        |                     | 1335         |             |
| Sounding Method:                       | Interfere    | <u>,</u>              | Measurement R      | ef:                 | Toe          |             |
| Stick Up/Down (ft):                    |              |                       | . Well Diameter (  | in.):               | 21           |             |
|                                        |              |                       | <del></del>        |                     |              |             |
| Purge Date:                            | 6/17/98      |                       | Purge Time:        |                     | 340 - 14     | 15          |
| Purge Method:                          | grund fo     | <u></u>               | Field Personnel:   | 1                   | RCIBA        |             |
| Ambient Air VOCs (ppm):                | 0.0          |                       | Well Mouth VO      | Cs (ppm):           | 0-0'         |             |
|                                        |              |                       |                    |                     |              |             |
|                                        |              | WELL V                | OLUME              |                     | A (          |             |
| A. Well Depth (ft):                    | 14.40        | <u> </u>              | D. Well Volume     | e/ft (L):           | .16          |             |
| B. Depth to Water (ft):                | 4.19         |                       | C. Well Volume     | e(L)                | 1.63         |             |
| E. Liquid Depth (ft) (A-B)             | 10.21        | <del>.</del>          | . E. Three Well V  | /olumes (L)         | 4.90         |             |
| <u> </u>                               |              |                       | <del></del>        |                     |              |             |
| Parameter                              | Beginning    | J 1                   | 2                  | 3                   | T 4          | 5           |
|                                        | 1342         | 1247                  | 1352               | 1357                | 1402         | 1406        |
| Time (min.)                            | 1/29         | 1120                  | 4.37               | ZI /LZ              | 1/1/22       | 4,35        |
| Depth to Water (ft) Purge Rate (l/min) | 0.75         | 0.8                   | 175                | 777                 | 1/1/2        | 0.6         |
| Volume Purged (L)                      | 1,5          | 5.5                   | 9.5                | 13.5                | 17.5         | 20.5        |
| pH                                     | 529          | 367                   | 5.71               | 372                 | 1572         | 5.73        |
| Temperature (°C)                       | 13.411       | 15 0A                 | 13.7               | 16.33               | 16.37        | 16.7        |
| Conductivity (µmhos/cm)                | 1/25         | 71                    | 74                 | 77                  | 76           | 77          |
| Dissolved Oxygen (mg/L)                | 1,39         | 061                   | 1732               | 0.44                | 0.45         | 0.36        |
| Turbidity (NTU)                        | 239          | 18.8                  | 16                 | 14                  | 3            | 3           |
|                                        | 105          | 70.0                  | 2                  | 4/                  | 46           | 43          |
| eH (mV)                                |              | / 7                   | L , ), )           | / ( )               | 1. 17()      | 13          |
| T-1-10                                 | d (1): (1)   | 7.                    | <del></del>        |                     |              | <del></del> |
| Total Quantity of Water Remo           | Oc IAA       |                       | Dimen (Otalia)     | 14                  | 10 - 1415    |             |
| Samplers:                              | 6117 198     |                       | Fime (Start/End):  | 75                  | <u> </u>     |             |
| Sampling Date:                         | 614170       | <del></del>           | ination Fluids Use | a: <u>リー</u><br>コーク | 7            |             |
| Sample Type:                           | THEATE       | Sample Pro<br>ハイ 仏(ひり | eservatives:       | -11-                |              |             |
| Sample Bottle IDs:                     | VINC TO      | 2H ~~                 | TPHO               | Tro.                | <del></del>  |             |
| Sample Parameters:                     | -VUC, IT     | 11 gro                | + 11110            | -10                 | <del>_</del> |             |
| Comments and Observations:             |              |                       |                    |                     |              |             |
|                                        | <del> </del> | <del> </del>          |                    |                     |              |             |
|                                        |              |                       |                    |                     |              |             |



| Site Name: Old Juel Sura | Project No.:29600.35 | Date: 6/17/98 |
|--------------------------|----------------------|---------------|
| Well ID: NUW 49          | Field Personnel: RC/ | BA            |

| Parameter               | 6    | 7 | 8 | 9 | 10 | 11 |
|-------------------------|------|---|---|---|----|----|
| Time (min.)             | 1408 |   |   | , |    |    |
| Depth to Water (ft)     | 4.37 |   |   |   |    |    |
| Purge Rate (L/min)      | 0.6  |   |   |   |    |    |
| Volume Purged (L)       | 23.5 |   |   |   |    | -  |
| рН                      | 5.13 |   |   |   |    |    |
| Temperature (°C)        | 1h,9 |   |   |   |    |    |
| Conductivity (µmhos/cm) | 97   |   |   |   |    |    |
| Dissolved Oxygen (mg/L) | 0.36 |   |   |   |    |    |
| Turbidity (NTU)         | 3    |   |   |   |    |    |
| Eh (mv)                 | 43   |   |   |   |    |    |

| Parameter               | 12 | 13 | 14 | 15 | 16 | 17 |
|-------------------------|----|----|----|----|----|----|
| Time (min)              |    |    |    |    |    |    |
| Depth to Water (ft)     |    | ,  |    |    |    |    |
| Purge Rate (L/min)      |    |    |    |    |    |    |
| Volume Purged (L)       |    |    |    |    |    |    |
| рН                      |    |    |    |    |    |    |
| Temperature (°C)        |    |    |    |    |    |    |
| Conductivity (µmhos/cm) |    |    |    |    |    |    |
| Dissolved Oxygen (mg/L) |    |    |    |    |    |    |
| Turbidity (NTU)         |    |    |    |    |    |    |
| Eh (mv)                 |    |    |    |    |    |    |

| COMMENTS AND | DBSERVATIONS |      | <br> |
|--------------|--------------|------|------|
|              |              |      | <br> |
|              |              | <br> |      |



| Site Name:                   | Old Fuel F        | fan             | Project Number  | r: <u> </u>   | 29600.3                                          | .5           |
|------------------------------|-------------------|-----------------|-----------------|---------------|--------------------------------------------------|--------------|
| Well ID:                     | MW-51             |                 | Well Lock Stat  | us:           | Gund                                             |              |
| Well Condition:              | Gocal             |                 | Weather:        |               | loud, ro                                         | ui 505       |
| Wen condition.               |                   |                 |                 | <del></del>   |                                                  |              |
|                              | 1/15/10/          |                 |                 |               | 1170                                             |              |
| Gauge Date:                  | 6/17/98           | <del></del>     | Gauge Time:     |               | 1130                                             |              |
| Sounding Method:             | _therero_         |                 | Measurement R   | lef:          | 70C                                              |              |
| Stick Up/Down (ft):          |                   |                 | Well Diameter   | (in.):        | ユ                                                |              |
|                              |                   |                 |                 |               |                                                  |              |
| Purge Date:                  | 6/17/98           |                 | Purge Time:     |               | 1135 -> 12                                       | 128          |
| _                            | Law Flan          |                 | Field Personnel | <del></del>   | RC.BH                                            | .,,,,        |
| Purge Method:                | 0.0               |                 |                 |               | 0.0                                              |              |
| Ambient Air VOCs (ppm):      |                   |                 | Well Mouth VO   | OCs (ppm):    | 0.0                                              |              |
|                              | <del></del>       |                 |                 | <del></del> - |                                                  |              |
|                              | //                | WELL V          | OLUME           |               | ; /                                              |              |
| A. Well Depth (ft):          | 16.00             |                 | D. Well Volum   | ne/ft (L):    | .16                                              |              |
| B. Depth to Water (ft):      | 2.97              |                 | C. Well Volum   | ie (L)        | 2.08                                             |              |
| E. Liquid Depth (ft) (A-B)   | 13.03             |                 | E. Three Well   |               | 6,25                                             |              |
| E. Biquid Sopin (ii) (i.i.s) |                   |                 |                 |               |                                                  |              |
|                              |                   |                 |                 |               |                                                  |              |
| Parameter                    | Beginning         | 1               | 2               | 3             | 4                                                | 5            |
| Time (min.)                  | 1135              | 1140            | 1145            | 1150          | 1155                                             | 1200         |
| Depth to Water (ft)          | 251               | 3.48            | 351             | 351           | 331                                              | 251          |
| Purge Rate (gpm) L/m         | 15 0.8            | 08              | 7 8             | 0 8           | 7 8                                              | 7            |
| 7,                           | ₩ 10.3            | 4               | 8               | 12            | 1/                                               | 20           |
| Volume Purged (gal) 🙏        | 500               | 5,96            | 394             | 5 21          | 594                                              |              |
| рН                           | $-\frac{1}{2}$    |                 |                 | 12.94         | <del>                                     </del> | 5,96         |
| Temperature (°C)             | 1090              | 12.18           | 12.89           | 15.00         | 13,19                                            | 13,00        |
| Conductivity (µmhos/cm)      | 100               | 54              | 135_            | 55_           | 156                                              | <u> </u>     |
| Dissolved Oxygen (mg/L)      | 3,04              | 4.22            | 4.65            | 502           | 15.09                                            | 5,29         |
| Turbidity (NTU)              | 1178              | 530             | 1 404           | 85            | 1 3()                                            | 16           |
| eH (mV)                      | 105               | 117             | 122             | 11/2          | 13/                                              | 135          |
| (en (inv)                    |                   | <del></del>     |                 |               |                                                  |              |
|                              |                   | 71.             | /               | <del></del>   |                                                  |              |
| Total Quantity of W          | ater Removed (L): | 36 A            |                 |               |                                                  |              |
| Samplers:                    | RCBA_             | Sampling Time   | (Start/End):    | 1220-         | 1228                                             |              |
| Sampling Date:               | 6/17/86           | Decontamination | on Fluids Used: | NI            |                                                  | ))           |
| Sample Type:                 | amh               | Sample Preserv  |                 | HCL           |                                                  |              |
|                              | <u>~j.~~</u>      | Campio 1 10301V |                 |               |                                                  | <del> </del> |
| Sample Bottle IDs:           | 41050 550         | 6 A A           | Voc             | TPHGR         | o dr. 10                                         | 7 K          |
| Sample Parameters:           | MASBFFO           | 111W005         | ,,,,,,          | IFFICE        | o TPH D                                          | 2            |
| Comments and Obse            | rvations:         |                 |                 |               | · - · - · - · · · · · · · · · · · · · ·          |              |
|                              |                   |                 |                 |               |                                                  |              |
| L                            |                   |                 |                 |               |                                                  |              |



| Site Name: | old full farm | Project No.: 29(600, 35) | Date: 6/17/98 |
|------------|---------------|--------------------------|---------------|
| Well ID:   | MW 51         | Field Personnel: BA,     | RC            |

| Parameter               | 6     | 7     | 8            | 9     | 10    | 11 |
|-------------------------|-------|-------|--------------|-------|-------|----|
| Time (min.)             | 1205  | 1208  | 1211         | 1214  | 12/7  |    |
| Depth to Water (ft)     | 3,51  | 3.65  | 3.65         | 3,65  | 365   |    |
| Purge Rate (L/min)      | 0.8   | 0.8   | 0.8          | 0,8   | 0.8   |    |
| Volume Purged (L)       | 24    | 26.4  | 28.8         | 31.2  | 33.6  |    |
| рН                      | 5.97  | 5,99  | 5.98         | 5.99  | 5,99  |    |
| Temperature (°C)        | 13.44 | 12.92 | 12,85        | 13.01 | 12.85 |    |
| Conductivity (µmhos/cm) | 57    | 60    | <b>#</b> 557 | 57    | 57    |    |
| Dissolved Oxygen (mg/L) | 5.43  | 5,67  | 5.78         | 5,84  | 5.86  |    |
| Turbidity (NTU)         | 89    | 13    | 7            | Y)    | 5     |    |
| Eh (mv)                 | 130   | 139   | 136          | 136   | 138   |    |

| Parameter               | 12 | 13 | 14 | 15 | 16 | 17 |
|-------------------------|----|----|----|----|----|----|
| Time (min)              |    |    |    |    |    |    |
| Depth to Water (ft)     |    |    |    |    |    |    |
| Purge Rate (L/min)      |    |    |    |    |    |    |
| Volume Purged (L)       |    |    |    |    |    |    |
| pН                      |    |    |    | ,  |    |    |
| Temperature (°C)        |    |    |    |    |    |    |
| Conductivity (µmhos/cm) |    |    |    |    |    |    |
| Dissolved Oxygen (mg/L) |    |    |    | -  |    |    |
| Turbidity (NTU)         |    |    |    |    |    |    |
| Eh (mv)                 |    |    |    |    |    |    |

| COMMENTS AND OBSERVATIONS |   |                                           |
|---------------------------|---|-------------------------------------------|
|                           | 1 | <br>· · · · · · · · · · · · · · · · · · · |
|                           |   |                                           |



| Site Name:                    | Did Fuel F         | ARM                                   | Project Number  |               | 9600.35  | <u> </u>    |
|-------------------------------|--------------------|---------------------------------------|-----------------|---------------|----------|-------------|
| Well ID:                      | MW-054             | · · · · · · · · · · · · · · · · · · · | Well Lock State |               | gred     | <del></del> |
| Well Condition:               | good               |                                       | Weather:        | 1             | oudy /   | rain 50     |
|                               |                    |                                       |                 | - <del></del> |          |             |
| Gauge Date:                   | 6/16/98            |                                       | Gauge Time:     | _             | 14 11    |             |
| Sounding Method:              | interface          | orobe                                 | Measurement R   | .ef:          | TOC      |             |
| Stick Up/Down (ft):           |                    |                                       | Well Diameter   | (in.):        | 211      |             |
|                               |                    | <del></del>                           |                 |               |          |             |
| Purge Date:                   | 6/16/98            |                                       | Purge Time:     | 10            | 127 - 15 | 6           |
| Purge Method:                 | arundfos.          | - low flow                            | Field Personnel | . <i>B.</i>   | Anderson | R. Clerk    |
| Ambient Air VOCs (ppm):       | 0 0                |                                       | Well Mouth VO   |               | 0        |             |
| . Zilosom (FF 117)            |                    |                                       |                 | (11 /         |          |             |
|                               | 16.14              | . WELL V                              | OLUME           |               |          | <del></del> |
| A. Well Depth (ft):           | 16.5612            | -Bt                                   | D. Well Volum   | e/ft (L.):    | ./6      |             |
| B. Depth to Water (ft):       | 2.92               |                                       | C. Well Volum   | • • •         | 2.11     |             |
| E. Liquid Depth (ft) (A-B)    | 13.22              |                                       | E. Three Well   | ` ,           | 6,34     |             |
| 2. 2. data = sp.m (s) (s = s) |                    |                                       |                 |               |          |             |
|                               | T D inning         | 1                                     |                 | 1 2           |          | Γ .         |
| Parameter                     | Beginning          | 11/2/                                 | 1////           | 3             | 4        | 3           |
| Time (min.)                   | 1430               | 1435                                  | 1440            | 1945          | 1450     | 1455        |
| Depth to Water (ft)           | 3.28               | 3,30                                  | 3.30            | 2,50          | 3,31     | 3.31        |
| Purge Rate (gpm) 4miv         |                    |                                       | 1.6             | 1.6           | 1.0      | 1.6         |
| Volume Purged (get) 2         | of all             | 10                                    | 18              | 26            | 34       | 42          |
| pH                            | 5.08               | 5.03                                  | 5.03            | 505           | 5.0      | 5.13        |
| Temperature (°C)              | 11.82              | 12.36                                 | 12.44           | 10.44         | 12.51    | 12.31       |
| Conductivity (µmhos/cm)       | 105.00             | 106.00                                | 106.00          | 104.00        | 10,3,00  | 103,00      |
| Dissolved Oxygen (mg/L)       | 8.01               | 5.01                                  | 3.83            | 3.01          | 2.40     | 2.06        |
| Turbidity (NTU)               | <b>#</b> \$-0      | U                                     | 0               | U             | 0        | 0           |
| eH (mV)                       | 317.3              | 304.3                                 | 1294-6          | 286.0         | 278.0    | 271.4       |
|                               |                    |                                       |                 |               | ·        |             |
| Total Quantity of V           | Vater Removed (L): | 50                                    |                 |               |          |             |
| Samplers:                     | BDA, RC            | Sampling Time                         | (Start/End):    | 1500-         | 1510     |             |
| Sampling Date:                | 6/16/98            | Decontamination                       | on Fluids Used: | vone          |          |             |
| Sample Type:                  | grab               | Sample Preserv                        |                 | HCL           |          |             |
| Sample Bottle IDs:            | WASB FF            | 04 MW001                              | MS/MS           |               |          |             |
| Sample Parameters             | To                 | H GRO,                                | TPH DR          | <u> </u>      |          |             |
| Comments and Obs              |                    | · · · · · · · · · · · · · · · · · · · |                 |               |          |             |
| 1428 pung                     |                    | er Slaw                               | tly ora         | neo-pli       | allup    |             |
| 11/1/2 2                      | MINITES            | unable «                              | to ourse        | Stoner +      | lu 1.621 | mi.         |



| Site Name: Well ID: Well Condition:                                    | old free fa<br>mw 58<br>good           | um         | Project Number:<br>Well Lock Status<br>Weather:      | ıs: <u>U</u> | 29600.3<br>Yes<br>Youdy my | ragy 50s |
|------------------------------------------------------------------------|----------------------------------------|------------|------------------------------------------------------|--------------|----------------------------|----------|
| Gauge Date: Sounding Method: Stick Up/Down (ft):                       | b/17/98<br>Interface                   | probe      | Gauge Time:<br>Measurement Re<br>Well Diameter (in   |              | 1238<br>Toc<br>2"          |          |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                      | 6/17/98<br>gruntos<br>0                |            | Purge Time:<br>Field Personnel:<br>Well Mouth VO     |              | 240 - 17<br>A/RC           | 37 5     |
| A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B) | 16.56<br>5.50<br>11.06                 | WELL VO    | OLUME  D. Well Volume C. Well Volume E. Three Well V | e (L)        | ,16<br>1,77<br>5.3]        |          |
| Parameter                                                              | Beginning                              | 1          | 2                                                    | 3            | 4                          | 5        |
| Time (min.)                                                            | 1245                                   | 1250       | 1255                                                 | 7300         | 1305                       | 1310     |
| Depth to Water (ft)                                                    | 8,74                                   | 5.70       | 5,70                                                 | 5.70         | 5.80                       | 5.96     |
| Purge Rate (l/min)                                                     | 0.4                                    | 0.4        | 0.4                                                  | 0.4          | 0.4                        | 0.4      |
| Volume Purged (L)                                                      | 2gal8                                  | 10         | 12                                                   | 14_          | 16                         | 18       |
| pН                                                                     | 5.52                                   | 5,79       | 5.82                                                 | 5.82         | 5,80                       | 5.74     |
| Temperature (°C)                                                       | 12.33                                  | 12.55      | 12.85                                                | 13,32        | 13,02                      | 13.10    |
| Conductivity (µmhos/cm)                                                | 46_!                                   | 46.,       | 145                                                  | 14231        | 44                         | 141      |
| Dissolved Oxygen (mg/L)                                                | 1.93                                   | 1.53       | 20                                                   | 4.04         | 2.52                       | 3,30     |
| Turbidity (NTU)                                                        | 296                                    | 272        | 105                                                  | 101          | 43                         | 42       |
| eH (mV)                                                                | 119                                    | 117        | 101                                                  | 100          | 99                         | 197      |
|                                                                        | wed (1): 2                             |            |                                                      |              |                            |          |
| Total Quantity of Water Remo                                           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |            | · /2: /7: /N                                         | 173          | 0 - 1335                   |          |
| Samplers:                                                              | RC/ BA                                 |            | Time (Start/End):                                    | 5, 1         | <u> </u>                   |          |
| Sampling Date:                                                         | 011/170                                |            | ination Fluids Used                                  | d: HC        | j                          |          |
| Sample Type:                                                           | 2 11 AS Q1                             | Sample Pre | eservatives:                                         |              |                            |          |
| Sample Bottle IDs:                                                     |                                        | TILLY INCL | 1004                                                 | <u> </u>     |                            |          |
| II .                                                                   | MAY NASIS                              | IN TO      | "4 son to                                            | CLL IUN      |                            |          |
| Sample Parameters:  Comments and Observations:                         | VOC CBT                                | EX) TP     | Hgro ti                                              | PHdro        | Sithaw                     | ~ ~      |



| Site Name: | Old fuel farm | Project No.: 29600,35 Date: 6/17/98 |  |
|------------|---------------|-------------------------------------|--|
| Well ID:   | MW 58         | Field Personnel: BA/RC              |  |

| Parameter               | 6    | 7             | 8    | 9 | 10 | 11 |
|-------------------------|------|---------------|------|---|----|----|
| Time (min.)             | 1315 | 1318          | 1321 |   |    |    |
| Depth to Water (ft)     | 6.01 | 5.97          | 5.97 |   |    |    |
| Purge Rate (L/min)      | 0.4  | 0.4           | 0.4  |   |    |    |
| Volume Purged (L)       | 20   | 21.2          | 22.4 |   |    |    |
| pН                      | 5.77 | 5.77          | 5,77 |   |    |    |
| Temperature (°C)        | 13.6 | 13.6          | 13,6 |   |    |    |
| Conductivity (µmhos/cm) | 41   | 41            | 41   |   |    |    |
| Dissolved Oxygen (mg/L) | 3,22 | 3,29          | 3.38 |   |    |    |
| Turbidity (NTU)         | 7    | $\mathcal{Z}$ | /    |   |    |    |
| Eh (mv)                 | 102  | 102           | 103  |   |    |    |

| Parameter               | 12 | 13 | 14 | 15 | 16 | 17 |
|-------------------------|----|----|----|----|----|----|
| Time (min)              |    |    |    |    |    |    |
| Depth to Water (ft)     |    |    |    |    |    |    |
| Purge Rate (L/min)      |    |    |    |    |    |    |
| Volume Purged (L)       |    |    |    |    |    |    |
| рН                      |    |    |    |    |    |    |
| Temperature (°C)        |    |    |    |    |    |    |
| Conductivity (µmhos/cm) |    |    |    |    |    |    |
| Dissolved Oxygen (mg/L) |    |    |    |    |    |    |
| Turbidity (NTU)         |    |    |    |    |    |    |
| Eh (mv)                 |    |    |    |    |    |    |

| OMMENTS AND OBSE | RVATIONS | <br> |  |
|------------------|----------|------|--|
|                  |          | <br> |  |
|                  |          |      |  |



| Site Name:<br>Well ID:<br>Well Condition:                                                                                                                           | ald fust of Respond                                       | tain,                                                                 | Project Number:<br>Well Lock Status<br>Weather:                       |                                                                        | HOCKED 3<br>DCKED<br>DUSLY                                      | 50'5                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| Gauge Date: Sounding Method: Stick Up/Down (ft):                                                                                                                    | 6/17/98<br>Interface                                      |                                                                       | Gauge Time:<br>Measurement Re<br>Well Diameter (in                    | <del></del>                                                            | 1510<br>Toc<br>2"                                               |                                                                      |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                                                                                                                   | 6/17/98<br>Grund Fr                                       | 25                                                                    | Purge Time:<br>Field Personnel:<br>Well Mouth VO                      |                                                                        | 1512 - 1<br>RCIBA<br>O                                          | 1628                                                                 |
| A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B)                                                                                              | 12.90<br>3.40<br>9.50                                     | WELL VO                                                               | OLUME  D. Well Volume C. Well Volume E. Three Well V                  | e (L)                                                                  | .16<br>1.52<br>4.56                                             |                                                                      |
| Parameter  Time (min.) Depth to Water (ft) Purge Rate (I/min) Volume Purged (L) pH Temperature (°C) Conductivity (µmhos/cm) Dissolved Oxygen (mg/L) Turbidity (NTU) | Beginning                                                 | 1<br>1520<br>3.80<br>1.4<br>15<br>6.03<br>14.44<br>113<br>6.52<br>887 | 1525<br>3.88<br>1.4<br>22<br>6.02<br>14.49<br>111<br>0.75<br>289      | 3<br>1530<br>3,83<br>1,4<br>29<br>6,03<br>14,47<br>114<br>0,14<br>2,27 | 1535<br>3.83<br>1.4<br>36<br>6.04<br>14.44<br>114<br>0.05<br>75 | 5<br>1540<br>3.83<br>1.4<br>43<br>6.05<br>14.83<br>111<br>0.13<br>93 |
| Total Quantity of Water Remore Samplers: Sampling Date: Sample Type: Sample Bottle IDs: Sample Parameters: Comments and Observations:                               | RCIPA<br>6/17/98<br>grab<br>NASBFFI<br>VDC TO<br>+ lowest | Decontami                                                             | Time (Start/End): ination Fluids Used eservatives: 107 TPH decorption | _                                                                      | JI<br>L                                                         | wp_                                                                  |



| Site Name: | Old fuel farm | Project Number:  | <i>2960</i> 0.35 | Date: | 6/17/98 |
|------------|---------------|------------------|------------------|-------|---------|
| Well ID:   | nw6/R         | Field Personnel: | RC/BA            |       |         |

| Parameter               | 6    | 7     | 8     | 9            | 10    | 11    |
|-------------------------|------|-------|-------|--------------|-------|-------|
| Time (min.)             | 1545 | 1550  | 1555  | 1600         | 1605  | 1610  |
| Depth to Water (ft)     | 3.75 | 3.74  | 3.75  | <b>3</b> ,75 | 3.80  | 3,80  |
| Purge Rate (L/min)      | 1.4  | 1.4   | 1.4   | 1.4          | 1.4   | 1.4   |
| Volume Purged (L)       | 50   | 57    | 64    | 71           | 78    | 85    |
| рН                      | 6.06 | 6.06  | 6.06  | 6.08         | 6,07  | 6.04  |
| Temperature (°C)        | 1403 | 14.69 | 14.68 | 14.49        | 14.48 | 14.45 |
| Conductivity (µmhos/cm) | 115  | 115   | 115   | 119          | 114   | 114   |
| Dissolved Oxygen (mg/L) | 0.12 | 0.09  | 0.07  | 0.08         | 0.05  | 0,04  |
| Turbidity (NTU)         | 79   | 64    | 59    | 49           | 51    | 43    |
| eH (mV)                 | -44  | -44   | -44   | -43          | -42   | -39   |

| Parameter               | 12    | 13    | 14    | 15    | 16    | 17    |
|-------------------------|-------|-------|-------|-------|-------|-------|
| Time (min.)             | 1615  | 1620  | 1625  | 1630  | 1635  | 1640  |
| Depth to Water (ft)     | 3,49  | 3,79  | 3.80  | 3.80  | 3.80  | 3.85  |
| Purge Rate (L/min)      | 1.4   | 1.4   | 1.4   | 1.4   | 1.4   | 1.4   |
| Volume Purged (L)       | 92    | 99    | 106   | 113   | 120   | 127   |
| рН                      | 6.04  | 6.04  | 6,04  | 6.04  | 6.04  | 6.03  |
| Temperature (°C)        | 14.49 | 14.49 | 14,50 | 14,29 | 14.27 | 14.32 |
| Conductivity (µmhos/cm) | 118   | 114   | 114   | 114   | 114   | 114   |
| Dissolved Oxygen (mg/L) | 0.04  | 0.04  | 0.03  | 0.07  | 0.07  | 0.07  |
| Turbidity (NTU)         | 37    | 30    | 30    | 21    | 18    | 23    |
| eH (mV)                 | I-40  | - 40  | -40   | -40   | -38   | -40   |

| Comments and Observations: |  |      |  |
|----------------------------|--|------|--|
|                            |  |      |  |
|                            |  | <br> |  |
|                            |  |      |  |
|                            |  |      |  |



| Site Name: Old Fuel                              | EARM T |                                   | 29600.3                                 | ζ- 5. | . 6/17/    | 08      |
|--------------------------------------------------|--------|-----------------------------------|-----------------------------------------|-------|------------|---------|
| Site Name: Old Fue! Well ID: MW-6!               |        | roject Number:<br>ield Personnel: | RC BA                                   |       | : <u> </u> | <u></u> |
|                                                  |        |                                   | 100,75.7                                |       |            |         |
| Parameter                                        | 6      | 7                                 | 8                                       | 9     | 10         | 11      |
| Time (min.)                                      | 1645   | 1650                              |                                         |       |            |         |
| Depth to Water (ft)                              | 3.85   | 3.85                              |                                         |       |            |         |
| Purge Rate (L/min)                               | 1.4    | 1.4                               |                                         |       |            |         |
| Volume Purged (L)                                | 134    | 141                               |                                         |       |            |         |
| рН                                               | 6.04   | 6.03                              |                                         |       |            |         |
| Temperature (°C)                                 | 14.42  | 14.35                             |                                         |       |            |         |
| Conductivity (µmhos/cm)                          | 114    | 114                               |                                         |       |            |         |
| Dissolved Oxygen (mg/L)                          | 0.03   | 0.07                              |                                         |       |            |         |
| Turbidity (NTU)                                  | 21     | 23                                |                                         |       |            |         |
| eH (mV)                                          | -40    | -41                               |                                         |       |            |         |
|                                                  |        |                                   | <del></del>                             |       |            |         |
| Parameter                                        | 12     | 13                                | 14                                      | 15    | 16         | 17      |
| Time (min.)                                      |        |                                   |                                         |       |            |         |
| Depth to Water (ft)                              |        |                                   |                                         |       |            |         |
| Purge Rate (L/min)                               |        |                                   |                                         |       |            |         |
| Volume Purged (L)                                |        |                                   |                                         |       |            |         |
| pН                                               |        |                                   |                                         |       |            |         |
| Temperature (°C)                                 |        |                                   |                                         |       |            |         |
|                                                  |        |                                   | *************************************** |       |            |         |
| Conductivity (µmhos/cm)                          |        |                                   |                                         |       |            |         |
| Conductivity (µmhos/cm)  Dissolved Oxygen (mg/L) |        |                                   |                                         |       |            |         |
|                                                  |        |                                   |                                         |       |            |         |
| Dissolved Oxygen (mg/L)                          |        |                                   |                                         |       |            |         |
| Dissolved Oxygen (mg/L) Turbidity (NTU)          |        |                                   |                                         |       |            |         |
| Dissolved Oxygen (mg/L) Turbidity (NTU)          |        |                                   |                                         |       |            |         |
| Dissolved Oxygen (mg/L) Turbidity (NTU) eH (mV)  |        |                                   |                                         |       |            |         |



| Site Name:  Well ID:  Well Condition:                                                                                                 | MW62<br>ADOR                                           | urm                                                                          | Project Number<br>Well Lock State<br>Weather:      |                                                    | # 2960<br>10CK-C<br>09 50                            | D, 35                                               |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|
| Gauge Date:  Sounding Method:  Stick Up/Down (ft):                                                                                    | 6/17/98<br>Interfore                                   | ord <u>.</u>                                                                 | Gauge Time:<br>Measurement R<br>Well Diameter      |                                                    | 0745<br>TOC<br>2"                                    |                                                     |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                                                                                     | Grunfos<br>grunfos                                     |                                                                              | Purge Time:<br>Field Personnel<br>Well Mouth VO    |                                                    | <b>750- 10</b><br>3A, R.C.                           | 05                                                  |
| A. Well Depth (ft):  B. Depth to Water (ft):  E. Liquid Depth (ft) (A-B)                                                              | 16.91<br>7.67<br>9.24                                  | WELL V                                                                       | OLUME  D. Well Volum  C. Well Volum  E. Three Well | e (L)                                              | .16<br>1.48<br>4.43                                  |                                                     |
| Parameter                                                                                                                             | Beginning                                              | 1                                                                            | 2                                                  | 3                                                  | 4                                                    | 5                                                   |
| Time (min.)  Depth to Water (ft)                                                                                                      | 750                                                    | 7.77                                                                         | 7.78                                               | 805                                                | 8/0                                                  | 7.75                                                |
| Purge Rate (gpm) M / VW Volume Purged (gał) / pH Temperature (°C) Conductivity (µmhos/cm) Dissolved Oxygen (mg/L) Turbidity (NTU)     | 100<br>Start<br>6.13<br>10.33<br>77.0<br>1.14<br>1015. | 400<br>3<br>6.01<br>10.74<br>71.0<br>6.37<br>523.3<br>170.5                  | 400<br>5<br>5.97<br>11.91<br>70.0<br>0.31<br>514.0 | 300<br>7<br>5.96<br>12.36<br>70.0<br>0.25<br>395.8 | 300<br>8.5<br>5.96<br>12.26<br>61.0<br>0.33<br>137.0 | 300<br>10<br>5.96<br>13.39<br>73.0<br>0.37<br>/07.8 |
| eH (mV)                                                                                                                               | 1276.9                                                 | 1110,5                                                                       | 126,3                                              | 1 75.1                                             | 109.0                                                | <u>  /J. /</u>                                      |
| Total Quantity of Wa<br>Samplers:<br>Sampling Date:<br>Sample Type:<br>Sample Bottle IDs:<br>Sample Parameters:<br>Comments and Obser | RC,BA 6/17/98 grab NASBFF VOC, TF                      | Sampling Time Decontamination Sample Preserve Of Mw066 DH GRO And pury Shaur | on Fluids Used:                                    | DI<br>HCL<br>MWOOD                                 | orouse of                                            | 5                                                   |



| Site Name: | Old fue ( faim | Project No.: 29600, 35 Date: 6/17/98 |
|------------|----------------|--------------------------------------|
| Well ID:   | WW62           | Field Personnel: BA, RC              |

| Parameter               | 6     | 7     | 8     | 9     | 10    | 11    |
|-------------------------|-------|-------|-------|-------|-------|-------|
| Time (min.)             | 820   | 825   | 830   | 835   | 840   | 845   |
| Depth to Water (ft)     | 7,75  | 7.75  | 7.75  | 7.75  | 7.76  | 7.76  |
| Purge Rate (L/min)      | 300   | 300   | 300   | 300   | 300   | 300   |
| Volume Purged (L)       | 11.5  | 13    | 12.5  | 15    | 16.5  | 18    |
| рН                      | 5.94  | 594   | 5.94  | 5.93  | 5.95  | 594   |
| Temperature (°C)        | 13.90 | 14.10 | 13,81 | 14,10 | 12,30 | 12.44 |
| Conductivity (µmhos/cm) | 73,0  | 73    | 72    | 72    | 64    | 66    |
| Dissolved Oxygen (mg/L) | 0.52  | 0.54  | 0,73  | 0.71  | 2,22  | 1.42  |
| Turbidity (NTU)         | 135.8 | 187   | 98    | 133   | 51    | 160   |
| Eh (mv)                 | 71.4  | 58    | 54    | 48    | 56    | 56    |

| Parameter               | 12         | 13    | 14    | 15    | 16    | 17     |
|-------------------------|------------|-------|-------|-------|-------|--------|
| Time (min)              | <b>ESD</b> | 855   | 900   | 905   | 910   | 920    |
| Depth to Water (ft)     | 7.76       | 7.76  | 7,76  | 7,76  | 77.3  | 77,2   |
| Purge Rate (L/min)      | 300        | 300   | 300   | 300   | 200   | 200    |
| Volume Purged (L)       | 19.5       | 21    | 22.5  | 24    | 258Rt | 26.5Rt |
| рН                      | 5,93       | 5.93  | 5,92  | 5.93  | 5,93  | 5,93   |
| Temperature (°C)        | 13.40      | 13.65 | 13.71 | 13.74 | 12.63 | 13.29  |
| Conductivity (µmhos/cm) | 70         | 70    | 70    | 70    | 56    | 7/     |
| Dissolved Oxygen (mg/L) | 1.08       | 0.99  | 0.96  | 1.0   | 1.39  | 1.45   |
| Turbidity (NTU)         | 122        | 104   | 101   | 99    | 35    | 49     |
| Eh (mv)                 | 53         | 48    | 49    | 55    | 58    | 59     |

| COMMENTS AND OBSERVATIONS |  |
|---------------------------|--|
|                           |  |

MATERIAL



| (OVERFLOW PAGE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                      |    |    |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------------------------------------|----|----|----|
| Site Name: Old full furn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |       | Project No.: 24600, 35 Date: 6/17/98 |    |    |    |
| Well ID: MW63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |       | Field Personnel: BARC                |    |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                      |    |    |    |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6     | 7 4   | 8                                    | 9  | 10 | 11 |
| Time (min.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 925   | 930   |                                      |    |    |    |
| Depth to Water (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77.2  | 7,72  |                                      |    |    |    |
| Purge Rate (L/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200   | HI    |                                      |    |    |    |
| Volume Purged (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28 84 | 38    |                                      |    |    |    |
| рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5,93  | 5.92  |                                      |    |    |    |
| Temperature (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.68 | 14.09 |                                      |    |    |    |
| Conductivity (µmhos/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70    | 69    |                                      |    |    |    |
| Dissolved Oxygen (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.37  | 1,24  |                                      |    |    |    |
| Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101   | 35    |                                      |    |    |    |
| Eh (mv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50    | 51    |                                      |    |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                      |    |    |    |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12    | 13    | 14                                   | 15 | 16 | 17 |
| Time (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |                                      |    |    |    |
| Depth to Water (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |                                      |    |    |    |
| Purge Rate (L/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |       |                                      |    |    |    |
| Volume Purged (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       |                                      |    |    |    |
| рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |       |                                      |    |    |    |
| Temperature (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                                      |    |    |    |
| Conductivity (µmhos/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |                                      |    |    |    |
| Dissolved Oxygen (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |                                      |    |    |    |
| Turbidity (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                      |    |    |    |
| Eh (mv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |                                      |    |    |    |
| COMMENTS AND OBSERVATIONS MWOOD Sample 1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |       |                                      |    |    |    |
| ON THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF THE COURT OF TH |       |       |                                      |    |    |    |

because 06 Thurder Stones



| Site Name:                                         | Fuel Fram       |              | Project Number:           |                 | 29600:                                             | 35          |
|----------------------------------------------------|-----------------|--------------|---------------------------|-----------------|----------------------------------------------------|-------------|
| Well ID:                                           | Sweet.          | <del></del>  | Well Lock Statu: Weather: | s:              |                                                    | warn Huit   |
| Well Condition:                                    |                 |              | weather.                  |                 |                                                    |             |
|                                                    | 6/18/98         |              |                           |                 | 1400                                               | <del></del> |
| Gauge Date:                                        | Intertage       |              | Gauge Time:               |                 | 1000<br>TOC                                        |             |
| Sounding Method:                                   | MACH THE        |              | Measurement R             |                 | 2"                                                 |             |
| Stick Up/Down (ft):                                |                 |              | Well Diameter (           | ın.):           |                                                    |             |
|                                                    | 11.100          | <del> </del> |                           |                 | : <del>                                     </del> | ~           |
| Purge Date:                                        | 6/18/98         |              | Purge Time:               | _/ <u>/</u>     | 310 - 115                                          | 0           |
| Purge Method:                                      | Low Flaw        |              | Field Personnel:          |                 | H, RC                                              |             |
| Ambient Air VOCs (ppm):                            | 0.0             |              | Well Mouth VO             | Cs (ppm):       | 'ం.౮                                               |             |
|                                                    |                 |              |                           |                 |                                                    | <del></del> |
|                                                    | 9.87            | WELL V       |                           |                 | .16                                                | ļ           |
| A. Well Depth (ft):                                | 7711            |              | D. Well Volume            |                 | 0.98                                               |             |
| B. Depth to Water (ft):                            | 717             |              | . C. Well Volume          | ` ,             | 2.94                                               |             |
| E. Liquid Depth (ft) (A-B)                         | 6.1.5           |              | E. Three Well V           | /olumes (L)     | 2.77                                               |             |
|                                                    |                 |              |                           |                 |                                                    |             |
| Parameter                                          | Beginning       | 1            | 2                         | 3               | 4                                                  | 5           |
| Time (min.)                                        | 1015            | 1020         | 1025                      | 1030            | 1035                                               | 1040        |
| Depth to Water (ft)                                | 4.87            | 4.62         | 4.62                      | 4.74            | 4.55                                               | 4.32        |
| Purge Rate (l/min)                                 | ,7 @            | .7           | D. 7                      | 0.7             | 0.7                                                | 0.7         |
| Volume Purged (L)                                  | 3.5             | 7            | 10.5                      | 14              | 17.5                                               | 21          |
| рН                                                 | 5.68            | 5.68         | 5.68                      | 5.70            | 5.72                                               | 5.72        |
| Temperature (°C)                                   | 16,22           | 16.41        | 16.97                     | 16.99           | 16.87                                              | 17.47       |
| Conductivity (µmhos/cm)                            | 123             | 120          | 12-1                      | 124             | 126                                                | 130         |
| Dissolved Oxygen (mg/L)                            | 0.27            | 0.21         | 0.15                      | 0.11            | 0.28                                               | 0.13        |
| Turbidity (NTU)                                    | 124             | 112          | 78                        | 78              | 62                                                 | 53          |
| eH (mV)                                            | 60              | 50           | 17                        | -10_            | -11                                                | -16         |
|                                                    |                 |              |                           |                 |                                                    |             |
| Total Quantity of Water Remo                       | oved (L): 48    |              |                           |                 |                                                    |             |
| Samplers:                                          | RCIBA           | Sampling     | Time (Start/End):         | <u> </u>        | 3-1150                                             |             |
| Sampling Date:                                     | 6118198         |              | ination Fluids Use        | ed: <u>X) /</u> |                                                    |             |
| Sample Type: Sample Preservatives: HCL             |                 |              |                           |                 |                                                    |             |
| Sample Bottle IDs:                                 | 1 Wear TA MINON |              |                           |                 |                                                    |             |
| Sample Parameters: VOC, TPH GRO, TPH DRO           |                 |              |                           |                 |                                                    |             |
| Comments and Observations: a unable to adjust love |                 |              |                           |                 |                                                    |             |
| Comments and Ouser various.                        |                 | <del> </del> |                           |                 |                                                    |             |
|                                                    |                 |              |                           |                 |                                                    |             |



eH (mV)

| Site Name: Sul face     | γ <u>.                                    </u> | roject Number: | 29600. | 35_ Date | : 6/18   | 3/98               |
|-------------------------|------------------------------------------------|----------------|--------|----------|----------|--------------------|
| Well ID: MW 211         | Fi                                             | eld Personnel: | BARC   |          | <i>'</i> |                    |
| Parameter               | 6                                              | 7              | 8      | 9        | 10       | 11                 |
|                         | 1D45                                           | 1054           | 1100   | 1176     | /)//>    | 111                |
| Time (min.)             | 1145                                           | 1111           | 1160   | 1103     | 500      | $\frac{1115}{612}$ |
| Depth to Water (ft)     | 7,06                                           | 4.47           | 4,00   | 4.53     | 5,70     | 2//3               |
| Purge Rate (L/min)      | 0.1                                            | 0./            | 0.1    | 0, /     | 0. /     | 0,1                |
| Volume Purged (L)       | 24.5                                           | 28             | 31.5   | 35       | 38.5     | 42                 |
| рН                      | 5.68                                           | 5.73           | 5.70   | 5,76     | 5,79     | 5.80               |
| Temperature (°C)        | 14.22                                          | 18.09          | 19.37  | 17.55    | 15.95    | 15,53              |
| Conductivity (µmhos/cm) | /35                                            | 136            | 141    | 138      | 137      | 137                |
| Dissolved Oxygen (mg/L) | 0.06                                           | 0.04           | 0.50   | 0.0      | 0.0      | -0,2               |
| Turbidity (NTU)         | 59                                             | 53             | 46     | 50       | 78       | 95                 |
| eH (mV)                 | -28                                            | - 39           | -40    | -56_     | -65      | -75                |
|                         |                                                |                |        |          |          |                    |
| Parameter               | 12                                             | 13             | 14     | 15       | 16       | 17                 |
| Time (min.)             | 1120                                           |                |        |          |          |                    |
| Depth to Water (ft)     | 5,13                                           |                |        |          |          |                    |
| Purge Rate (L/min)      | 0.7                                            |                |        |          |          |                    |
| Volume Purged (L)       | 45,5                                           | _              |        |          |          |                    |
| рН                      | 5.81                                           |                |        |          |          |                    |
| Temperature (°C)        | 15.62                                          |                |        |          |          |                    |
| Conductivity (µmhos/cm) | 139                                            |                |        |          |          |                    |
| Dissolved Oxygen (mg/L) | -0.03                                          |                |        |          |          |                    |
| Turbidity (NTU)         | 11\_                                           |                |        | ]<br>    |          | Şe.                |
|                         | 6.6                                            |                |        | I        |          | I                  |

| Comments and Observations: at 1110 - Water Level is Just above. |
|-----------------------------------------------------------------|
| pump - Still pumpha Water.                                      |
|                                                                 |
| 1124 Stop pump to fat well recharge and sample.                 |
|                                                                 |
|                                                                 |



| Site Name: Well ID: Well Condition:                                    | OH<br>MU<br>OP            | fuel fo<br>2013<br>02.                | wa         | Project Number:<br>Well Lock Status<br>Weather:     | i     | 19600.30<br>Ocked<br>Joudy | 50'S   |
|------------------------------------------------------------------------|---------------------------|---------------------------------------|------------|-----------------------------------------------------|-------|----------------------------|--------|
| Gauge Date:<br>Sounding Method:<br>Stick Up/Down (ft):                 |                           | 117198<br>Necture                     |            | Gauge Time:<br>Measurement Re<br>Well Diameter (i   |       | 1425<br>TOC<br>2"          |        |
| Purge Date: Purge Method: Ambient Air VOCs (ppm):                      | lell<br>Ori               | 7/98<br>ind to S                      |            | Purge Time:<br>Field Personnel:<br>Well Mouth VO    |       | 1478 -<br>RC/BA            | 1507   |
| A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B) |                           | .57<br>.80<br>.67                     | WELL V     | DLUME D. Well Volume C. Well Volume E. Three Well V | :(L)  | .16<br>1.23<br>3.68        |        |
| Parameter                                                              |                           | Beginning                             | 1          | 2                                                   | 3     | 4                          | 5      |
| Time (min.)                                                            |                           | 1429                                  | 1434       | 1441                                                | 1446  | 1449                       | 1452   |
| Depth to Water (ft)                                                    |                           | 3.80                                  | 3.90       | 3.84                                                | 3,84  | 3.84                       | 3.84   |
| Purge Rate (l/min)                                                     |                           | 0,8                                   | 0.8        | 0.8                                                 | 0.8   | 0,8                        | 0,8    |
| Volume Purged (L)                                                      |                           | 0.8                                   | 4.8        | 8.8                                                 | 12.8  | 15.2                       | 17.6   |
| рН                                                                     |                           | 4,43                                  | 5.47       | 5.62                                                | 5.63  | 5.64                       | 6.5.64 |
| Temperature (°C)                                                       |                           | 15.10                                 | 13.91      | 15.60                                               | 16.01 | 15.95                      | 15,81  |
| Conductivity (µmhos/cm)                                                |                           | 56                                    | 61         | 60                                                  | 61    | 60                         | 60     |
| Dissolved Oxygen (mg/L)                                                |                           | 6.95                                  | 6.78       | 6.79                                                | 6,70  | 6.70                       | 6.69   |
| Turbidity (NTU)                                                        |                           | 396                                   | 385        | 24                                                  | 8.9   | 6                          | 4      |
| eH (mV)                                                                |                           | 90                                    | 10.3       | 105                                                 | 114   | 113                        | 12-0   |
|                                                                        |                           |                                       |            |                                                     |       |                            |        |
| Total Quantity of Water Remo                                           | ved (L)                   | :6                                    | 20         |                                                     |       |                            |        |
| Samplers:                                                              | $\mathcal{L}$             | CIBA                                  | Sampling T | ime (Start/End):                                    | 15    | 00-150                     | 7      |
| Sampling Date:                                                         | _6                        | 16117198 Decontamination Fluids Used: |            |                                                     |       |                            |        |
| Sample Type:                                                           | Sample Preservatives; HCL |                                       |            |                                                     |       |                            |        |
| Sample Bottle IDs:                                                     | UNASBFF04 MWOOD           |                                       |            |                                                     |       |                            |        |
| Sample Parameters:                                                     |                           | VOC TPH DOO, TPHARO                   |            |                                                     |       |                            |        |
| Comments and Observations:                                             |                           |                                       |            |                                                     |       |                            |        |
|                                                                        |                           |                                       |            |                                                     |       |                            |        |

### **Appendix D**

Laboratory Report
Chemical Analysis of Ground Water

#### MW AND WP SAMPLE IDENTIFICATIONS FOR OLD NAVY FUEL FARM 16-18 JUNE 1998

| MW44     | NASBFF04MW008    |
|----------|------------------|
| MW44-DUP | NASBFF04MWXD1    |
| MW49     | NASBFF04MW005    |
| MW51     | NASBFF04MW003    |
| MW54     | NASBFF04MW001    |
| MW58     | NASBFF04MW004    |
| MW61R    | NASBFF04MW007    |
| MW62     | NASBFF04MW002    |
| MW211    | NASBFF04MW009    |
| MW213    | NASBFF04MW006    |
| WP01     | NASBFF04WP007    |
| WP02     | NASBFF04WP001    |
| WP03     | NASBFF04WP017    |
| WP04     | NASBFF04WP014    |
| WP04-DUP | NASBFF04WXD1     |
| WP05     | NASBFF04WP006    |
| WP06     | NASBFF04WP008    |
| WP06-DUP | NASBFF04WXD2     |
| WP07     | NASBFF04WP011    |
| WP08     | NASBFF04WP012    |
| WP09     | NASBFF04WP013    |
| WP10     | NASBFF04WP005    |
| WP11     | NASBFF04WP010    |
| WP12     | NASBFF04WP002    |
| WP13     | Wellpoint bent   |
| WP14     | NASBFF04WP004    |
| WP15     | NASBFF04WP009    |
| WP16R    | NASBFF04WP016    |
| WP17R    | NASBFF04WP015    |
| WP18R    | NASBFF04WP018    |
| WP20     | Wellpoint broken |
| WP21     | NASBFF04WP019    |
| WP22     | NASBFF04WP003    |

19 Loveton Circle Sparks, MD 21152 Telephone: 410-771-4920 Fax: 410-771-4407



August 3, 1998

Mr. John Carnright EA Engineering, Science, & Technology, Inc. 3 Washington Center Newburgh, NY 12550

Re: Fuel Farm (29600.35)

Dear Mr. Carnright:

Enclosed is a revision to our report on the analysis of three water samples collected for the Fuel Farm project on 18 June 1998.

Please contact me if you have any questions or require further information and refer to report 981037rev. Unless other arrangements are made, we reserve the right to dispose of your samples sixty (60) days from the date of this letter. We will retain the raw data for seven years from this date.

Sincerely,

David F. Brennan

Laboratory Project Manager

David F. Brennan

enclosure

Client: EA Eng., Sci., & Tech., Inc.

Laboratory Project Manager: David F. Brennan

Site: Fuel Farm

EA Laboratories Report: 981037

Project number: 29600.35

Date: 3 August 1998

This report contains the results of the analysis of three water samples collected on 18 June 1998 in support of the referenced project.

#### SAMPLE RECEIPT

The samples and one trip blank arrived by Federal Express at EA Laboratories on 20 June 1998. Upon receipt, the samples and blank were inspected and compared with the chain-of-custody record. The samples and blank were then logged into the laboratory computer system with assigned laboratory accession numbers and released for analysis. Operating under a variance from NFESC laboratory QA guidance, EA Laboratories stores aqueous samples for the determination of metals at  $4C \pm 2C$  until disposal.

| <u>EA Lab Number</u> |
|----------------------|
| 9807487              |
| 9807488              |
| 9807489              |
| 9807490              |
|                      |

Following this narrative section are a glossary of data qualifiers used in this report (Table 1) and the original chain-of-custody record. Analytical results and quality control information are summarized in the appended data package which has been formatted to be consistent with the deliverable requirements of this project.

### **QUALITY CONTROL**

The following sections are ordered as the data appears in this report. They contain observations made during sample analysis, summarize the results of quality control measurements, and address the impact on data usability based upon project Data Quality Objectives. For each fractional analysis the narrative includes:

Sample chronology: This section summarizes the sample history by fraction including the sample preparation method and date, analytical method, and analysis date. Anything unusual about the samples, digestates, or extracts is identified. Holding time compliance is evaluated in this section.

Laboratory method performance: All quality control criteria for method performance must be met for all target analytes for data to be reported. These criteria generally apply to instrument tune,

Client: EA Eng., Sci., & Tech., Inc.

Laboratory Project Manager: David F. Brennan

Site: Fuel Farm

EA Laboratories Report: 981037

Project number: 29600.35

Date: 3 August 1998

calibration, method blanks, and Laboratory Control Samples (LCS). In some instances where method criteria fail, useable data can be obtained and are reported with client approval. The narrative will then include a thorough discussion of the impact on data quality.

Sample performance: Quality control field samples are analyzed to determine any measurement bias due to the sample matrix based on evaluation of matrix spikes (MS), matrix spike duplicates (MSD), and laboratory duplicates (D). If acceptance criteria are not met, matrix interferences are confirmed either by reanalysis or by inspection of the LCS results to verify that laboratory method performance is in control. Data are reported with appropriate qualifiers or discussion.

### AROMATIC VOLATILES by GC - WATER (EA9807487 -EA9807490)

Sample Chronology: Four aqueous samples and associated quality control were analyzed on 01 July and 02 July 1998 for benzene, toluene, ethylbenzene, and xylenes (BTEX) plus methyl tertiary butyl ether (MTBE) by USEPA 40CFR, Part 136, Appendix A, Method 602. All holding times were met.

• Sample NASBFF04MW009 was reanalyzed at a fifty times (50X) dilution in order to bring the concentrations of target analytes within calibration range.

Laboratory Method Performance: All laboratory method performance criteria were met for the reported samples.

Sample Performance: All quality control criteria were met for the reported samples.

#### **PURGABLE TPH by GCFID - WATER (EA9807487, EA9807488, EA9807490)**

Sample Chronology: Three aqueous samples and associated quality control were analyzed on 01-02 July 1998 by Maine Method 4.2.17 for gasoline range organics (GRO). All holding times were met.

Laboratory Method Performance: All laboratory method performance criteria were met for the reported samples.

Sample Performance: All quality control criteria were met for the reported samples.

Upon further review, two samples, NASBFF04MW008 and NASBFF04MWXD1, were requantitated using a curve without the high point (5000 ug/L). The re-quantitated results are included.

Client: EA Eng., Sci., & Tech., Inc.

Site: Fuel Farm

Project number: 29600.35

Laboratory Project Manager: David F. Brennan

EA Laboratories Report: 981037

Date: 3 August 1998

#### EXTRACTABLE TPH by GC - WATER (EA9807487, EA9807488, EA9807490)

Sample Chronology: Three aqueous samples and associated quality control were extracted on 23 June 1998 and analyzed on 10-11 July 1998 according to Maine Method 4.1.25 for diesel range organics (DRO). All holding times were met.

• A batch matrix spike/matrix spike duplicate (MS/MSD) was performed on another Brunswick sample, NASBFF04MW001.

Laboratory Method Performance: All laboratory method performance criteria were met for the reported samples.

Sample Performance: All quality control criteria were met for the reported samples.

#### CERTIFICATION OF RESULTS

The Laboratory certifies that this report meets the project requirements for analytical data as stated in the Analytical Task Order (ATO) and the chain-of-custody. In addition, the Laboratory certifies that the data as reported meet the Data Quality Objectives for precision, accuracy, and completeness specified for this project or as stated in EA Laboratories Quality Assurance program for other than the conditions detailed above. It is recommended by the Laboratory that this analytical report should only be reproduced in its entirety. EA Laboratories is not responsible for any assumptions of data quality if partial packages are used to interpret data. Release of the data contained in this report has been authorized by the appropriate Laboratory Manager as verified by the following signature.

David J. Brennan 3 August 1998 David F. Brennan, Laboratory Project Manager

EPA SAMPLE NO.

NASBFF04MW008 Report#: 981037 Lab Name: EA LABORATORIES SDG No.: Client: FUEL FAR Method: 4.2.17 Lab Code: EA ENG Lab Sample ID: #9807487 WATER atrix: (soil/water) Lab File ID: VD4J3012.D 5.0 (g/mL) ML Sample wt/vol: Date Sampled: 6/18/98 Level: (low/med) Date Analyzed: 7/2/98 % Moisture: not dec. Dilution Factor: 1.0 ID: 0.53 (mm) GC Column: DB-624 Soil Aliquot Volume: (uL) \_\_\_\_(uL) Soil Extract Volume: Concentration Units: Compound (ug/L or ug/Kg) CAS No. ug/L Q TPH-Gasoline Range

EPA SAMPLE NO.

| Lab Nam    | e FAIARO        | RATORIES           | Report#:        | 981037               | NASBFF04N                                        | MWXD1 |
|------------|-----------------|--------------------|-----------------|----------------------|--------------------------------------------------|-------|
|            | <del></del>     |                    | <del></del>     | <del></del>          |                                                  |       |
| Lab Code   | EA ENG          | _ Client: FU       | JEL FAR Method: | 4.2.17               | SDG No.:                                         |       |
| Matrix: (  | (soil/water)    | WATER              |                 | Lab Sample ID:       | #9807488                                         |       |
| Sample w   | rt/vol <u>:</u> | 5.0 (g/mL)         | ML              | Lab File ID          | : <u>VD4J3013.E</u>                              | )     |
| Level:     | (low/med)       |                    |                 | Date Sampled:        | 6/18/98                                          |       |
| % Moistu   | ire: not dec.   |                    | •-              | Date Analyzed:       | 7/2/98                                           |       |
| GC Colur   | nn: DB-624      | ID:                | 0.53 (mm)       | Dilution Factor:     | 1.0                                              |       |
| Soil Extra | act Volume:     | (uL)               |                 | Soil Aliquot Volume: |                                                  | (uL)  |
|            |                 |                    | Concentrat      | tion Units:          |                                                  |       |
| 1          | CAS No.         | Compound           | (ug/L or ug/I   | Kg) <u>ug/L</u>      | Q                                                |       |
| [          | <u> </u>        | TPH-Gasoline Range |                 | 28                   |                                                  |       |
| }          |                 |                    | <del></del>     |                      | ļ                                                |       |
|            |                 |                    |                 |                      |                                                  |       |
| }          |                 |                    |                 |                      | <u> </u>                                         |       |
| ŀ          |                 |                    |                 |                      |                                                  |       |
|            |                 |                    |                 |                      |                                                  |       |
| ł          |                 |                    |                 | <del></del>          |                                                  |       |
|            |                 |                    |                 |                      |                                                  |       |
| }          |                 |                    |                 |                      |                                                  |       |
|            | -               |                    |                 |                      |                                                  |       |
| L          |                 |                    |                 |                      |                                                  |       |
|            |                 |                    |                 |                      |                                                  |       |
| -          |                 |                    |                 |                      | <del>                                     </del> |       |
|            |                 |                    |                 |                      |                                                  |       |
| }          |                 |                    |                 | <del> </del>         |                                                  |       |
| ļ          |                 |                    |                 |                      |                                                  |       |
| -          |                 |                    |                 |                      |                                                  |       |
| Į          |                 |                    |                 |                      |                                                  |       |
|            |                 |                    |                 |                      |                                                  |       |
| <b> </b>   |                 |                    |                 | <del></del>          | <del></del>                                      |       |
|            |                 |                    |                 |                      |                                                  |       |
| ŀ          |                 |                    |                 |                      |                                                  |       |
|            |                 |                    |                 |                      |                                                  |       |

19 Loveton Circle Sparks, MD 21152 Telephone: 410-771-4920 Fax: 410-771-4407



July 28, 1998

Mr. John Carnright EA Engineering, Science, & Technology, Inc. 3 Washington Center Newburgh, NY 12550

Re: Fuel Farm (29600.35)

Dear Mr. Carnright:

Enclosed is our report on the analysis of 22 water samples collected for the Fuel Farm project on 18 June 1998. The invoice is included.

Please contact me if you have any questions or require further information and refer to report 981036. Unless other arrangements are made, we reserve the right to dispose of your samples sixty (60) days from the date of this letter. We will retain the raw data for seven years from this date.

Sincerely,

David F. Brennan

Laboratory Project Manager

David J. Brenna

enclosure

## LABORATORY DATA REPORT

Prepared for:

Fuel Farm 29600.35

Prepared by:

EA Laboratories 19 Loveton Circle Sparks, MD 21152 (410) 771-4920


Report 981036

July 1998

## TABLE OF CONTENTS

## NAS Brunswick EA Laboratories Report 981036

- 1. NARRATIVE
- 2. CHAIN OF CUSTODY
- 3. ORGANIC DATA
  - A. Volatiles-602
  - B. TPH-GRO-Maine
  - C. TPH-DRO-Maine



Client: EA Eng., Sci., & Tech., Inc.

nc. Laboratory Project Manager: David F. Brennan

Site: Fuel Farm

EA Laboratories Report: 981036

Project number: 29600.35

Date: 28 July 1998

This report contains the results of the analysis of 22 water samples collected on 18 June 1998 in support of the referenced project.

#### SAMPLE RECEIPT

The samples and one trip blank arrived by Federal Express at EA Laboratories on 20 June 1998. Upon receipt, the samples and blank were inspected and compared with the chain-of-custody record. The samples and blank were then logged into the laboratory computer system with assigned laboratory accession numbers and released for analysis. Operating under a variance from NFESC laboratory QA guidance, EA Laboratories stores aqueous samples for the determination of metals at  $4C \pm 2C$  until disposal.

| Client Sample Designation | EA Lab Number |
|---------------------------|---------------|
| NASBFF04WP001             | 9807464       |
| NASBFF04WPRB1             | 9807465       |
| TRIP 2                    | 9807466       |
| NASBFF04WP002             | 9807467       |
| NASBFF04WP003             | 9807468       |
| NASBFF04WP004             | 9807469       |
| NASBFF04WP005             | 9807470       |
| NASBFF04WP006             | 9807471       |
| NASBFF04WP007             | 9807472       |
| NASBFF04WP008             | 9807473       |
| NASBFF04WP009             | 9807474       |
| NASBFF04WP010             | 9807475       |
| NASBFF04WP011             | 9807476       |
| NASBFF04WP012             | 9807477       |
| NASBFF04WP013             | 9807478       |
| NASBFF04WP014             | 9807479       |
| NASBFF04WP015             | 9807480       |
| NASBFF04WP016             | 9807481       |
| NASBFF04WP017             | 9807482       |
| NASBFF04WP018             | 9807483       |
| NASBFF04WP019             | 9807484       |
| NASBFF04WXD1              | 9807485       |
| NASBFF04WXD2              | 9807486       |
|                           |               |

Client: EA Eng., Sci., & Tech., Inc.

Laboratory Project Manager: David F. Brennan

Site: Fuel Farm

EA Laboratories Report: 981036

Project number: 29600.35

Date: 28 July 1998

Following this narrative section are a glossary of data qualifiers used in this report (Table 1) and the original chain-of-custody record. Analytical results and quality control information are summarized in the appended data package which has been formatted to be consistent with the deliverable requirements of this project.

## **QUALITY CONTROL**

The following sections are ordered as the data appears in this report. They contain observations made during sample analysis, summarize the results of quality control measurements, and address the impact on data usability based upon project Data Quality Objectives. For each fractional analysis the narrative includes:

Sample chronology: This section summarizes the sample history by fraction including the sample preparation method and date, analytical method, and analysis date. Anything unusual about the samples, digestates, or extracts is identified. Holding time compliance is evaluated in this section.

Laboratory method performance: All quality control criteria for method performance must be met for all target analytes for data to be reported. These criteria generally apply to instrument tune, calibration, method blanks, and Laboratory Control Samples (LCS). In some instances where method criteria fail, useable data can be obtained and are reported with client approval. The narrative will then include a thorough discussion of the impact on data quality.

Sample performance: Quality control field samples are analyzed to determine any measurement bias due to the sample matrix based on evaluation of matrix spikes (MS), matrix spike duplicates (MSD), and laboratory duplicates (D). If acceptance criteria are not met, matrix interferences are confirmed either by reanalysis or by inspection of the LCS results to verify that laboratory method performance is in control. Data are reported with appropriate qualifiers or discussion.

## AROMATIC VOLATILES by GC - WATER (EA9807464 -EA9807486)

Sample Chronology: Twenty-three aqueous samples and associated quality control were analyzed on 01 July and 02 July 1998 for benzene, toluene, ethylbenzene, and xylenes (BTEX) plus methyl tertiary butyl ether (MTBE) by USEPA 40CFR, Part 136, Appendix A, Method 602. All holding times were met.

Client: EA Eng., Sci., & Tech., Inc.

Site: Fuel Farm

Project number: 29600.35

Laboratory Project Manager: David F. Brennan

EA Laboratories Report: 981036

Date: 28 July 1998

• Sample NASBFF04WP003 and sample NASBFF04MW006 were reanalyzed at fifty times (50X) dilutions in order to bring the concentrations of target analytes within calibration range.

• The batch matrix spike analyzed on 01 July 1998 was performed on another Fuel Farm sample, NASBFF04MWXD1.

Laboratory Method Performance: All laboratory method performance criteria were met for the reported samples.

Sample Performance: All quality control criteria were met for the reported samples.

# PURGEABLE TPH by GC/FID - WATER (EA9807464, EA9807465, EA9807467-EA9807486)

Sample Chronology: Twenty-two aqueous samples and associated quality control were analyzed by Maine Method 4.2.17 on 30 June and 01-02 July 1998 for total petroleum hydrocarbons (TPH) as gasoline range organics (GRO). All holding times were met.

• Sample NASBFF04WP011 was reanalyzed at a two times (2X) dilution in order to bring the concentration of GRO within calibration range.

Laboratory Method Performance: All laboratory method performance criteria were met for the reported samples.

Sample Performance: All quality control criteria were met for the reported samples with the following exceptions:

- The batch matrix spikes/matrix spike duplicates performed on samples NASBFF04WP001 and NASBFF04WP019 had recoveries for spiked compounds that were masked by high native concentration in the samples.
- Samples NASBFF04WP001, NASBFF04WP003, NASBFF04WP006 DL (10X), NASBFF04WP015, and NASBFF04WP019 had results of GRO above the upper calibration limit of 1000 ug/L and are flagged with an "E".

Client: EA Eng., Sci., & Tech., Inc.

Laboratory Project Manager: David F. Brennan

Site: Fuel Farm

EA Laboratories Report: 981036

Project number: 29600.35

Date: 28 July 1998

### EXTRACTABLE TPH by GC - WATER (EA9807464, EA9807465, EA9807467 - EA9807486)

Sample Chronology: Twenty-two aqueous samples and associated quality control were extracted on 23 and 24 June 1998 and analyzed on 10-12 July 1998 according to Maine Method 4.1.25 for diesel range organics (DRO).

- The batch matrix spike/ matrix spike duplicate (MS/MSD) extracted on 23 June 1998 was performed on another Fuel Farm sample, NASBFF04MW001. All data associated with these QC samples are included in this report.
- Sample NASBFF04WP001 was reanalyzed at a five times (5X) dilution, sample NASBFF04WP003 was reanalyzed at a twenty times (20X) dilution, sample NASBFF04WP015 was reanalyzed at a five times (5X) dilution, and sample NASBFF04WXD1 was reanalyzed at a four times (4X) dilution in order to bring the concentrations of diesel range organics within calibration range.
- Sample NASBFF04WP006 had surrogate recoveries below laboratory QC limits. The sample
  was re-extracted on 17 July 1998, twenty-two days outside holding time, and re-analyzed on 21
  July 1998. Samples NASBFF04WP012 and NASBFF04WP019 also had surrogate recoveries
  below laboratory QC limits, but there was not enough sample to re-extract.

Laboratory Method Performance: All laboratory method performance criteria were met for the reported samples.

Sample Performance: All quality control criteria were met for the reported samples with the following exceptions:

- The batch matrix spike/matrix spike duplicate (MS/MSD) recoveries were masked by the high native concentration in the sample.
- Samples NASBFF04WP006 (37%), NASBFF04WP012 (19%), and NASBFF04WP019 (48%) had the recoveries of OTP below the lower QC limits of 50%. These low recoveries may indicate a low bias to the reported results for these samples.

Qualitative Interpretation:

Client: EA Eng., Sci., & Tech., Inc.

Site: Fuel Farm

Project number: 29600.35

Laboratory Project Manager: David F. Brennan

EA Laboratories Report: 981036

Date: 28 July 1998

The chromatographic patterns for samples NASBFF04WP003, NASBFF04WP014, and NASBFF04WXD1 were consistent with a typical diesel fuel pattern.

The chromatographic pattern for sample NASBFF04WP001 was consistent with diesel fuel plus several other heavier petroleum products.

chromatographic patterns for samples NASBFF04WP006, NASBFF04WP011, NASBFF04WP015, NASBFF04WP016, and NASBFF04WP019 were not consistent with the typical diesel pattern.

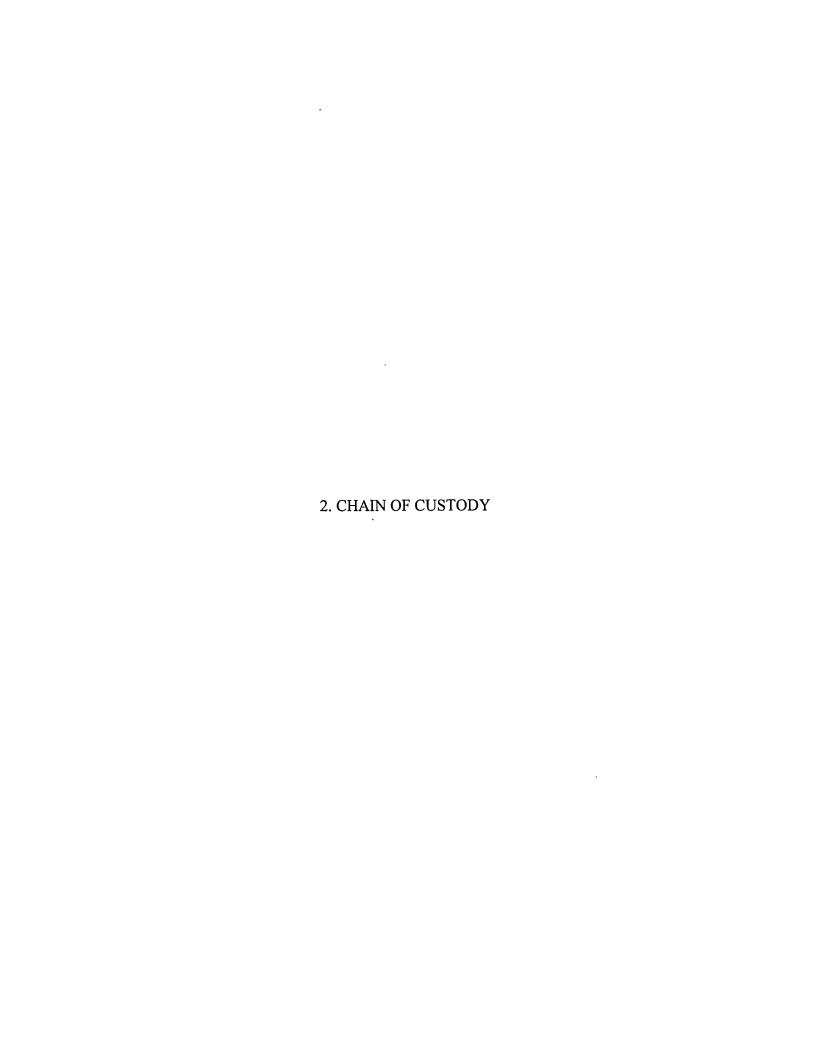
patterns for samples NASBFF04WPRB1, The chromatographic NASBFF04WP002. NASBFF04WP004, NASBFF04WP005, NASBFF04WP007-NASBFF04WP010, NASBFF04WP012, NASBFF04WP013, NASBFF04WP017, NASBFF04WP018, NASBFF04WXD2 contained individual peaks that were not consistent with fuel pattern.

#### CERTIFICATION OF RESULTS

The Laboratory certifies that this report meets the project requirements for analytical data as stated in the Analytical Task Order (ATO) and the chain-of-custody. In addition, the Laboratory certifies that the data as reported meet the Data Quality Objectives for precision, accuracy, and completeness specified for this project or as stated in EA Laboratories Quality Assurance program for other than the conditions detailed above. It is recommended by the Laboratory that this analytical report should only be reproduced in its entirety. EA Laboratories is not responsible for any assumptions of data quality if partial packages are used to interpret data. Release of the data contained in this report has been authorized by the appropriate Laboratory Manager as verified by the following signature.

David F. Brennan, Laboratory Project Manager

28 July 1998


### TABLE 1. LABORATORY ORGANIC ANALYSIS DATA QUALIFIERS (1)

Qualifiers other than those listed below may be required to properly define the results. If used, they are given an alphabetic designation not already specified in this table or in a project/program document. such as a Quality Assurance Project Plan or a contract Statement of Work. Each additional qualifier is fully described in the Analytical Narrative section of the laboratory report.

- U Indicates a target compound was analyzed for but not detected. The sample Reporting Limit (RL) is corrected for dilution and, if a soil sample, for percent moisture, if reported on a dry weight basis.
- J Indicates an estimated value. This qualifier is used under the following circumstances:
  - 1) when estimating a concentration for tentatively identified compounds (TICs) in GC/MS analyses, where a 1:1 response is assumed,
  - 2) when the mass spectral and retention time data indicate the presence of a compound that meets the volatile and semivolatile GC/MS identification criteria, and the result is less than the RL but greater than the method detection limit (MDL).
- B This qualifier is used when the analyte is found in the associated method blank as well as in the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action. For GC/MS analyses, this qualifier is used for a TIC, as well as, for a positively identified target compound.
- E This qualifier identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- **D** When applied, this qualifier identifies all compound concentrations reported from a secondary dilution analysis.
- A This qualifier indicates that a TIC is a suspected aldol-condensation product.
- N Indicates presumptive evidence of a compound. This qualifier is only used for GC/MS TICs, where the identification is based on a mass spectral library search. For generic characterization of a TIC, such as chlorinated hydrocarbon, the N qualifier is not used.
- P When applied, this qualifier indicates a reported value from a GC analysis when there is greater than 25% difference for detected concentrations between the two GC columns.

<sup>(1)</sup> These Data Qualifiers are added by the laboratory to provide additional information for the reported results.

They should not be confused with the qualifiers applied to the reported data as a result of a data validation process performed independently of the laboratory reporting procedure.



| Company Ce:  Project Manag r or Contact;  Description Carris 14  Phone: 914 565 8100  Project Name:  Fuel Farm  ATO Number:  Parame Method Numbers for Analysis  Chain of Custody  Project Name:  Parame Method Numbers for Analysis  Chain of Custody  Project Name:  Parame Method Numbers for Analysis  Chain of Custody  Project Name:  Project Manag r or Contact;  Description Carris 19  Project Name:  Parame Method Numbers for Analysis  Chain of Custody  Project Name:  Parame Method Numbers for Analysis  Parame Method Numbers for Analysis  Chain of Custody  Project Name:  Pro | -4920        |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|
| Proj ct No. 29600. 35 Project Name:  U + 5 3 Telephone: (410) 77 Fax: (410) 771-4407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4920        |  |  |  |  |  |  |
| Fax: (410) 771-4407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |  |  |  |  |  |  |
| D pt. 2172 lask: 7250   Tuel FARM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |  |  |  |  |  |  |
| Sample Storage Location:   ATO Number:   M15  1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |  |  |  |  |  |
| Page of 1 The point of 98 1036 The point of 13 148 The page of 1 The point of 13 148 The page of 1 The point of 13 148 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page of 1 The page  |              |  |  |  |  |  |  |
| Date Time S 0 Sample Identification  Date Time S 0 Sample Identification  19 Characters  19 Characters  19 Characters  10 C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |  |  |  |  |  |
| 418/98 0900 4 NASBF FOYUPOOI PS/MED 24 4 4 MS/MED 9807464 LPM: David BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nuan         |  |  |  |  |  |  |
| 0/18/18/0830 X WASBIFFO4WARBI 8 7 7 7 Q807465 EAL-18-065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -            |  |  |  |  |  |  |
| 6/18/98/0830 X TR/1P24 11 11 1 3 X 1 9807466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |  |  |  |  |  |  |
| 1045 X NA SIBFIFOA WP 002 1 1 1 8 X X X X 1 1 9807467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |  |  |  |  |  |  |
| 1110 X NAGBFIEDHEPPOBILITION &XXX 9807468 Main Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            |  |  |  |  |  |  |
| 1320 X NASBFFICHWPODH 1111 8XXX 9807469 required for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |  |  |  |  |  |  |
| 1330 X NASBFFOHWPODISIIII 8XXXX 9807470 GROAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RO           |  |  |  |  |  |  |
| 1345 X WASIBFFOHDPIOGG IIII 8XXXX OKO7471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |  |  |  |  |  |  |
| 400 × WAISBFFOUNPGO7 1111 8 XXXX 1980 7477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |  |  |  |  |  |
| 1415 X WASBFFOGWPOOR 8 XXX 0807473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |  |  |  |  |  |  |
| 1440 X NASBEFOHWPORP SXXX PGON74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |  |  |  |  |  |  |
| 1455 X NASIBFFISHWADIO 11 1 8XXX 9807475 COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |  |  |  |  |  |  |
| 1505 X NAGBFFOHWPDIIII 1 5 XXX 9807476 1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |  |  |  |  |  |  |
| 1520 X NASBFFOHW9017 8XXXX 9807477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |  |  |  |  |  |  |
| 1600 X NASBFF04WP013 111 8XXX 9807478 , 1/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |  |  |  |  |  |  |
| 165 X NASISFEDHILAGIHIIII 8XXXX 9807479 L 413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |  |  |  |  |  |  |
| 1630 X WAISHFIOHWPA115 8XXX 9807480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · ·  |  |  |  |  |  |  |
| 1645 X NASBFFOHWPDIG 1111 8XXX 9807481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (26)         |  |  |  |  |  |  |
| 100 110 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D - 1 - / T  |  |  |  |  |  |  |
| Sampl s by: (Signature)  Date/Time Relinquished by: (Signature)  Date/Time Received by: (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date/Time    |  |  |  |  |  |  |
| Polinguished by (Cigneture) Pote/Time Received by I shorten (Cigneture) Dete/Time Airbill Alumber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ov: (Circl.) |  |  |  |  |  |  |
| Bricia D. auden 11116 Hecerved by Caborated Station Date 11116 Alfoli Number:  Sampl Shipped Fed Ex. Puro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UPS          |  |  |  |  |  |  |
| Cooler Temp. 2.2 C pH: Yes No Comments: Custody Seals Intact No Hand Carried                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |  |  |  |  |  |  |
| NOTE: PI ase indicat m thod number for analyses requisted. This will help clarify any questions with laboratory techniques.  Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |  |  |  |  |  |  |

97018P

14/41/

3. ORGANIC DATA

A. Volatiles

EPA SAMPLE NO.

| NΑ | SBFF | ()4W | P001 |
|----|------|------|------|

| Lab Nam   | ne: EA LABO                           | RATORIES             | Report#:       | 981036               |             |      |
|-----------|---------------------------------------|----------------------|----------------|----------------------|-------------|------|
| Lab Cod   | e: EAENG                              | Client: FUEL FAI     | R Method: 6    | 02                   | SDG No.:    |      |
| atrix:    | (soil/water)                          | WATER                |                | Lab Sample ID:       | #9807464    |      |
| Sample v  | vt/vol:                               | 5.0 (g/mL) ML        |                | Lab File ID:         | VB2A4232.I  | )    |
| Level:    | (low/med)                             |                      |                | Date Sampled:        | 6/18/98     |      |
| % Moist   | ure: not dec.                         |                      |                | Date Analyzed:       | 7/2/98      |      |
| GC Colu   | mn: DB-VRX                            | ID: 0.45 (           | mm)            | Dilution Factor:     | 1.0         |      |
| Soil Extr | act Volume:                           | (uL)                 |                | Soil Aliquot Volume: |             | (uL) |
|           |                                       |                      | Concentration  |                      |             |      |
| ı         | CAS No.                               |                      | (ug/L or ug/Kg | ) <u>ug/L</u>        | Q           |      |
|           | 1634-04-4                             | Methyl t-Butyl Ether |                | 1                    | U           |      |
|           | 71-43-2                               | Benzene              |                | 1                    | U           |      |
|           | 108-88-3                              | Toluene              |                | 1                    | U           |      |
|           | 100-41-4                              | Ethylbenzene         |                | 2                    |             |      |
|           |                                       | m&p-Xylenes          |                | 9                    |             |      |
|           | 95-47-6                               | o-Xylene             | 1              | 5                    |             |      |
| ĺ         |                                       |                      |                |                      |             |      |
|           | <del></del>                           | <del></del>          | <del></del>    |                      |             |      |
|           |                                       |                      | <b>_</b>       | ·                    |             |      |
| ,         |                                       |                      | <del></del>    |                      |             |      |
| ļ         |                                       |                      | <u> </u>       |                      |             |      |
|           |                                       |                      |                |                      |             |      |
|           |                                       |                      |                |                      |             |      |
| [         |                                       |                      |                |                      |             |      |
| ſ         |                                       |                      |                |                      |             |      |
| Ī         | · · · · · · · · · · · · · · · · · · · |                      | 1              |                      |             |      |
| ŀ         |                                       |                      |                |                      |             |      |
| f         |                                       |                      | †              |                      |             |      |
| -         |                                       |                      |                |                      |             |      |
| -         |                                       |                      | -              |                      |             |      |
| }         |                                       |                      | <del> </del>   |                      |             |      |
| -         | <del></del>                           |                      | <del></del>    |                      |             |      |
|           |                                       | ,                    |                |                      | <del></del> |      |
|           | -                                     |                      | ļ              |                      |             |      |
| -         |                                       |                      | <u> </u>       |                      |             | ÷    |
|           |                                       |                      |                |                      |             |      |
|           |                                       |                      | <u> </u>       |                      |             |      |
| L         |                                       |                      |                |                      |             |      |
|           | _                                     |                      |                |                      |             |      |
| ſ         |                                       |                      |                |                      |             |      |
| Ī         |                                       |                      |                |                      |             |      |
| t         |                                       |                      | <del> </del>   |                      |             |      |
| ŀ         |                                       | ····                 |                |                      |             |      |
| ŀ         | <del></del>                           |                      |                |                      |             |      |
| -         |                                       |                      |                |                      |             |      |

3/90

EPA SAMPLE NO.

NASRFF04WPRR1

| Lab Name: EA      | LABORATORIES     |                         | Report#:                                         | 98103        |                 | NASBFF04W  | PRB1 |
|-------------------|------------------|-------------------------|--------------------------------------------------|--------------|-----------------|------------|------|
| Lab Code: EA      | ENG C            | lient: <u>FUEL FA</u> R | Method:                                          | 602          |                 | SDG No.:   |      |
| Matrix: (soil/wa  | ter) WATER       |                         |                                                  | L            | ab Sample ID:   | #9807465   |      |
| Sample wt/vol:    | (g               | /mL) ML                 |                                                  |              | Lab File ID:    | VB2A4209.D | )    |
| Level: (low/m     | ed)              |                         |                                                  | Γ            | Pate Sampled:   | 6/18/98    |      |
| % Moisture: no    | t dec.           |                         |                                                  | D            | ate Analyzed:   | 7/1/98     |      |
| GC Column: DB     | -VRX             | ID: <u>0.45</u> (1      | nm)                                              | D            | ilution Factor: | 1.0        |      |
| Soil Extract Volu | me:(u            | L)                      |                                                  | Soil Al      | iquot Volume:   |            | (uL) |
|                   |                  |                         | Concentra                                        | tion Units   | •               |            |      |
| CAS No            | c. Compound      | (                       | ug/L or ug/l                                     | Kg)          | ug/L            | Q          |      |
| 1634-04           | -4 Methyl t-Buty | Ether                   |                                                  |              | 1               | U          |      |
| 71-43-2           | Benzene          |                         |                                                  |              | 1               | U          |      |
| 108-88-           | 3 Toluene        |                         | <u> </u>                                         |              | 1               | U          |      |
| 100-41-           | 4 Ethylbenzene   |                         |                                                  |              | 1               | U          |      |
|                   | m&p-Xylenes      |                         |                                                  |              | 1               | U          |      |
| 95-47-6           | o-Xylene         |                         | <u> </u>                                         |              | 1               | U          |      |
|                   |                  |                         |                                                  |              |                 |            |      |
|                   |                  |                         |                                                  |              | <u> </u>        |            |      |
|                   |                  |                         |                                                  |              |                 |            |      |
|                   |                  |                         | <u> </u>                                         | ····         |                 |            |      |
|                   |                  |                         |                                                  |              |                 |            |      |
|                   |                  | <u> </u>                | <del> </del>                                     | <del></del>  |                 |            |      |
|                   |                  |                         |                                                  | <u> </u>     |                 |            |      |
|                   |                  |                         |                                                  |              |                 |            |      |
|                   |                  | <del></del>             | <del>                                     </del> | <del> </del> |                 |            |      |
| -                 |                  |                         |                                                  |              |                 |            |      |
|                   |                  |                         |                                                  |              |                 |            |      |
|                   |                  |                         |                                                  |              |                 |            |      |
|                   |                  |                         |                                                  |              | <del></del>     |            |      |
|                   |                  |                         |                                                  |              |                 |            |      |
|                   |                  |                         |                                                  |              |                 |            |      |
|                   |                  |                         | <u> </u>                                         |              |                 |            |      |
|                   |                  |                         |                                                  |              |                 |            |      |
|                   |                  |                         |                                                  |              |                 |            |      |
|                   |                  |                         |                                                  |              |                 |            |      |
|                   |                  |                         |                                                  |              |                 |            |      |
|                   |                  |                         |                                                  |              |                 |            |      |
|                   |                  |                         |                                                  |              |                 |            |      |
|                   |                  |                         |                                                  |              |                 |            |      |

3/90

VOLATILE ORGANICS ANALYSIS DATA SHEET
TRIP 2

EPA SAMPLE NO.

|                                                  |            |                 |                                        |             |               |                                       | IIRIP Z              |      |
|--------------------------------------------------|------------|-----------------|----------------------------------------|-------------|---------------|---------------------------------------|----------------------|------|
| Lab Name:                                        | EA LABO    | RATORIES        |                                        | Report#     | :98           | 1036                                  |                      |      |
| Lab Code:                                        | EAENG      |                 | Client: FUEL                           | FAR Method  | l: <u>602</u> |                                       | SDG No.:             |      |
| atrix: (sc                                       | oil/water) | WATER           |                                        |             |               | Lab Sample ID:                        | #9807466             | _    |
| Sample wt/v                                      | vol:       | 5.0             | g/mL) ML                               |             |               | Lab File ID                           | : <u>VB2A4210.</u> 1 | D.   |
| Level: (le                                       | ow/med)    |                 |                                        |             |               | Date Sampled:                         | 6/18/98              |      |
| % Moisture                                       | : not dec. |                 |                                        |             |               | Date Analyzed:                        | 7/1/98               |      |
| GC Column                                        | : DB-VRX   |                 | ID: 0.45                               | (mm)        |               | Dilution Factor:                      | 1.0                  |      |
| Soil Extract                                     | Volume:    | (               | uL)                                    |             | Soil          | Aliquot Volume:                       |                      | (uL) |
|                                                  |            |                 |                                        | Concent     | tration Ui    | nits:                                 |                      |      |
| CA                                               | AS No.     | Compound        |                                        | (ug/L or u  | g/Kg)         | ug/L                                  | Q                    |      |
| 16                                               | 34-04-4    | Methyl t-But    | yl Ether                               |             |               | 1                                     | U                    | •    |
| <u> </u>                                         | -43-2      | Benzene         |                                        |             |               | 1                                     | U                    |      |
|                                                  | 8-88-3     | Toluene         |                                        |             |               | 1                                     | U                    |      |
|                                                  | 0-41-4     | Ethylbenzene    |                                        |             | <del></del>   | 1                                     | Ü                    |      |
| 10                                               | U +1 +     | m&p-Xylenes     |                                        |             |               | 1                                     | U                    |      |
| 05                                               | -47-6      | o-Xylene        | <u> </u>                               |             |               | 1                                     | <del> </del>         |      |
| 93                                               | -47-0      | 0-Aylelle       |                                        |             |               |                                       | U                    |      |
| _                                                |            |                 |                                        |             |               | <del></del>                           |                      |      |
|                                                  |            |                 |                                        |             |               |                                       |                      |      |
|                                                  |            |                 |                                        |             |               |                                       |                      |      |
|                                                  |            |                 |                                        |             |               |                                       |                      |      |
|                                                  | <u> </u>   |                 |                                        |             |               |                                       |                      |      |
| _                                                | **         |                 |                                        |             |               | · · · · · · · · · · · · · · · · · · · |                      |      |
| <u> </u>                                         |            | <del></del>     |                                        | -           |               |                                       |                      |      |
| <u> </u>                                         |            |                 |                                        |             |               |                                       |                      |      |
|                                                  |            |                 |                                        | -           |               |                                       |                      |      |
| <u> </u>                                         |            |                 |                                        | <del></del> |               | ·                                     |                      |      |
| ļ                                                |            |                 |                                        |             |               |                                       |                      |      |
| ļ                                                |            |                 |                                        |             |               |                                       |                      | •    |
|                                                  |            |                 |                                        |             |               |                                       |                      |      |
|                                                  | <u> </u>   |                 |                                        |             |               |                                       |                      |      |
|                                                  |            |                 |                                        |             |               |                                       |                      |      |
|                                                  |            |                 |                                        |             |               |                                       |                      |      |
|                                                  |            |                 |                                        |             |               |                                       |                      |      |
|                                                  |            |                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 1           | -             |                                       |                      |      |
|                                                  |            |                 |                                        |             |               |                                       |                      | •    |
| -                                                |            |                 | <del></del>                            | -           |               |                                       |                      |      |
| <del>                                     </del> |            |                 |                                        |             |               |                                       |                      |      |
| <del> </del>                                     |            |                 |                                        |             |               |                                       | <del></del>          |      |
| <b> </b>                                         |            | · - <del></del> | <del></del> .                          |             |               |                                       | <b></b>              |      |
| <u> </u>                                         |            |                 |                                        |             |               |                                       |                      |      |
| <u></u>                                          |            | ·               | <del></del>                            |             |               |                                       |                      |      |
|                                                  |            |                 |                                        |             |               |                                       |                      |      |
|                                                  |            |                 |                                        |             |               |                                       |                      |      |
| <u> </u>                                         |            |                 |                                        |             |               |                                       |                      |      |

EPA SAMPLE NO.

(uL)

Soil Aliquot Volume:

Lab Code: EAENG Client: FUEL FAR Method: 602 SDG No.:

 Matrix: (soil/water)
 WATER
 Lab Sample ID: #9807467

 Sample wt/vol:
 5.0 (g/mL) ML
 Lab File ID: VB2A4211.D

Level: (low/med) Date Sampled: 6/18/98

% Moisture: not dec. \_\_\_\_\_ Date Analyzed: \_\_\_\_\_\_7/2/98

GC Column: DB-VRX ID: 0.45 (mm) Dilution Factor: 1.0

#### Concentration Uni

(uL)

Soil Extract Volume:

| Concentration Units: |                      |                 |      |             |  |  |  |
|----------------------|----------------------|-----------------|------|-------------|--|--|--|
| CAS No.              | Compound             | (ug/L or ug/Kg) | ug/L | Q           |  |  |  |
| 1634-04-4            | Methyl t-Butyl Ether |                 | 1    | U           |  |  |  |
| 71-43-2              | Benzene              |                 | 1    | U           |  |  |  |
| 108-88-3             | Toluene              |                 | 2    |             |  |  |  |
| 100-41-4             | Ethylbenzene         |                 | 1    | U           |  |  |  |
|                      | m&p-Xylenes          |                 | 2    |             |  |  |  |
| 95-47-6              | o-Xylene             |                 | 1    | U           |  |  |  |
|                      |                      |                 |      |             |  |  |  |
|                      |                      |                 |      |             |  |  |  |
|                      |                      |                 |      |             |  |  |  |
|                      |                      |                 |      |             |  |  |  |
|                      |                      |                 |      |             |  |  |  |
|                      |                      |                 |      |             |  |  |  |
|                      |                      |                 |      |             |  |  |  |
|                      |                      |                 |      |             |  |  |  |
|                      |                      |                 |      |             |  |  |  |
|                      |                      |                 |      |             |  |  |  |
|                      |                      |                 |      | <del></del> |  |  |  |
|                      |                      |                 |      |             |  |  |  |
|                      |                      |                 |      |             |  |  |  |
|                      |                      |                 |      |             |  |  |  |
|                      |                      |                 |      |             |  |  |  |
|                      |                      |                 |      |             |  |  |  |
|                      |                      |                 |      |             |  |  |  |

FORM I VOA 3/90

EPA SAMPLE NO.

NASBFF04WP003

Lab Name: EA LABORATORIES Report#: 981036 Client: FUEL FAR Method: 602 SDG No.: Lab Code: **EAENG** Lab Sample ID: #9807468 atrix: (soil/water) WATER 5.0 (g/mL) MLLab File ID: VB2A4212.D Sample wt/vol: Level: (low/med) Date Sampled: 6/18/98 Date Analyzed: 7/2/98 % Moisture: not dec. Dilution Factor: 1.0 ID: 0.45 (mm) GC Column: DB-VRX Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Concentration Units: CAS No. Compound (ug/L or ug/Kg) ug/L Q Methyl t-Butyl Ether 1634-04-4 1 Ū 71-43-2 Benzene 150 108-88-3 Toluene 450 Ε 100-41-4 Ethylbenzene 110 m&p-Xylenes 330 95-47-6 o-Xylene 120

EPA SAMPLE NO.

NASBFF04WP003 DL

981036 Lab Name: EA LABORATORIES Report#: Lab Code: EAENG Client: FUEL FAR Method: 602 SDG No.: WATER Lab Sample ID: #9807468 DL Matrix: (soil/water) 5.0 (g/mL) ML Lab File ID: VB2A4247.D Sample wt/vol: Date Sampled: 6/18/98 Level: (low/med) % Moisture: not dec. Date Analyzed: 7/2/98 GC Column: DB-VRX - - - ID: 0.45 - (mm) - Dilution Factor: 50.0 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: Concentration Units: Compound (ug/L or ug/Kg) Q CAS No. ug/L 1634-04-4 Methyl t-Butyl Ether 50 U 120 71-43-2 Benzene D 570 108-88-3 D Toluene 100-41-4 Ethylbenzene 110 D m&p-Xylenes 530 D 95-47-6 170 D o-Xylene

EPA SAMPLE NO.

NASBFF04WP004

Lab Name: EA LABORATORIES Report#: 981036 602 SDG No.: Lab Code: **EAENG** Client: FUEL FAR Method: atrix: (soil/water) WATER Lab Sample ID: #9807469 Lab File ID: VB2A4234.D Sample wt/vol: 5.0 (g/mL) ML Date Sampled: 6/18/98 Level: (low/med) Date Analyzed: 7/2/98 % Moisture: not dec. GC-Column: DB-VRX ID: 0.45 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: \_\_\_\_ (uL) \_ (uL) Soil Extract Volume: Concentration Units: CAS No. Compound (ug/L or ug/Kg) ug/L Q 1634-04-4 Methyl t-Butyl Ether 1 U 1 71-43-2 Benzene  $\overline{\mathbf{U}}$ 108-88-3 Toluene 1 U 100-41-4 Ethylbenzene 1 U m&p-Xylenes 1 U 95-47-6 o-Xylene 1 U

EPA SAMPLE NO.

NASBFF04WP005

981036 EA LABORATORIES Report#: Lab Name: SDG No.: Lab Code: **EAENG** Client: FUEL FAR Method: 602 WATER Lab Sample ID: #9807470 Matrix: (soil/water)  $5.0 mtext{(g/mL)} mtext{ML}$ Lab File ID: VB2A4214.D Sample wt/vol: Date Sampled: 6/18/98 (low/med) Level: Date Analyzed: 7/2/98 % Moisture: not dec. ID:\_\_0.45\_\_(mm)\_\_\_\_ Dilution Factor: 1.0 ---- GC-Column: DB-VRX \_\_\_\_(uL) Soil Aliquot Volume: (uL) Soil Extract Volume: Concentration Units: Compound CAS No. (ug/L or ug/Kg) ug/L Q Methyl t-Butyl Ether 1 U 1634-04-4 Benzene 1 U 71-43-2 108-88-3 Toluene 1 Ū Ethylbenzene 1 U 100-41-4 U m&p-Xylenes 1 Ü 95-47-6 o-Xylene 1

EPA SAMPLE NO.

| Lab Name:    | EA LABOR    | RATORIES             |         | Report#:                              | 981          | 1036                                  |            |      |
|--------------|-------------|----------------------|---------|---------------------------------------|--------------|---------------------------------------|------------|------|
| Lab Code:    | EAENG       | Client: F            | UEL FAR | Method:                               | 602          |                                       | SDG No.:   |      |
| atrix: (soi  | l/water)    | WATER                |         |                                       |              | Lab Sample ID:                        | #9807471   |      |
| Sample wt/vo | ol:         | 5.0 (g/mL)           | ML      |                                       |              | Lab File ID:                          | VB2A4215.1 | P    |
| Level: (lo   | w/med)      |                      |         |                                       |              | Date Sampled:                         | 6/18/98    |      |
| % Moisture:  | not dec.    | <del></del>          |         |                                       |              | Date Analyzed:                        | 7/2/98     | •    |
| GC Column:   | DB-VRX      | ID:                  | .0.45(n | ım)                                   |              | Dilution_Factor:                      | 1.0        |      |
| Soil Extract | Volume:     | (uL)                 |         |                                       | Soil         | Aliquot Volume:                       |            | (uL) |
|              |             |                      |         | Concentrat                            |              |                                       | _          |      |
|              | S No.       | Compound             | (ı      | ıg/L or ug/k                          | (g)<br>      | ug/L                                  | Q          |      |
| 163          | 4-04-4      | Methyl t-Butyl Ether |         |                                       |              | 1                                     | U          |      |
| 71-4         | 43-2        | Benzene              |         |                                       |              | 52                                    |            |      |
| 108          | -88-3       | Toluene              |         |                                       |              | 470                                   | Е          |      |
| 100          | -41-4       | Ethylbenzene         |         |                                       |              | 460                                   | Е          |      |
|              |             | m&p-Xylenes          |         |                                       |              | 480                                   | E          |      |
| 95-4         | 47-6        | o-Xylene             |         |                                       |              | 450                                   | E          |      |
|              |             |                      |         |                                       |              |                                       |            |      |
|              |             |                      |         |                                       |              |                                       |            |      |
|              |             |                      |         |                                       |              | · · · · · · · · · · · · · · · · · · · |            |      |
|              |             |                      |         |                                       |              | · · · · · · · · · · · · · · · · · · · |            |      |
| <u> </u>     |             |                      |         |                                       |              | ·                                     |            |      |
|              |             |                      |         |                                       |              |                                       |            |      |
|              |             |                      |         |                                       | ·            |                                       |            |      |
|              |             |                      |         |                                       |              |                                       |            |      |
|              | <del></del> |                      |         |                                       | -            |                                       |            |      |
|              |             |                      |         |                                       |              |                                       |            |      |
|              |             |                      |         |                                       |              |                                       |            |      |
|              |             |                      |         |                                       |              |                                       |            |      |
| <u> </u>     |             |                      |         | ***                                   |              |                                       |            |      |
|              |             |                      |         |                                       | <del> </del> |                                       |            |      |
| <u> </u>     |             |                      |         |                                       | <del></del>  |                                       |            |      |
|              |             |                      |         | · · · · · · · · · · · · · · · · · · · |              | ·                                     |            | •    |
|              |             |                      |         |                                       |              |                                       |            |      |
|              |             |                      |         |                                       |              |                                       |            |      |
|              | <u> </u>    |                      |         | <del></del>                           |              |                                       |            |      |
|              |             | <del> </del>         | . = -   |                                       | ****         |                                       |            |      |
|              |             |                      |         |                                       |              |                                       |            |      |
| <del> </del> |             |                      |         |                                       |              |                                       |            |      |
| <del> </del> |             |                      |         |                                       |              |                                       |            |      |
|              |             |                      |         | <del></del>                           |              |                                       |            |      |
|              |             |                      |         |                                       |              |                                       |            |      |

EPA SAMPLE NO.

NASBFF04WP006 DL Lab Name: **EA LABORATORIES** Report#: 981036

Lab Code: **EAENG** Client: FUEL FAR Method: 602 SDG No.:

WATER Lab Sample ID: #9807471 DL Matrix: (soil/water)

(g/mL) ML Sample wt/vol: Lab File ID: VB2A4246.D Level: (low/med) Date Sampled: 6/18/98

5.0

% Moisture: not dec. Date Analyzed: 7/2/98

-GC Column: DB-VRX \_\_\_\_ID:\_\_0.45\_\_\_(mm)\_\_\_ Dilution Factor: 50.0

(uL) Soil Extract Volume: Soil Aliquot Volume: (uL)

|             | Concentration Units: |                      |   |  |  |  |  |  |
|-------------|----------------------|----------------------|---|--|--|--|--|--|
| CAS No.     | Compound             | (ug/L or ug/Kg) ug/L | Q |  |  |  |  |  |
| 1634-04-4   | Methyl t-Butyl Ether | 50                   | U |  |  |  |  |  |
| 71-43-2     | Benzene              | 50                   | U |  |  |  |  |  |
| 108-88-3    | Toluene              | 710                  | D |  |  |  |  |  |
| 100-41-4    | Ethylbenzene         | 890                  | D |  |  |  |  |  |
|             | m&p-Xylenes          | 4500                 | D |  |  |  |  |  |
| 95-47-6     | o-Xylene             | 2200                 | D |  |  |  |  |  |
|             |                      |                      |   |  |  |  |  |  |
|             |                      |                      |   |  |  |  |  |  |
|             |                      |                      |   |  |  |  |  |  |
|             |                      |                      |   |  |  |  |  |  |
|             |                      |                      |   |  |  |  |  |  |
|             |                      |                      |   |  |  |  |  |  |
|             |                      |                      |   |  |  |  |  |  |
|             |                      |                      |   |  |  |  |  |  |
|             |                      |                      |   |  |  |  |  |  |
| <del></del> |                      |                      |   |  |  |  |  |  |
|             |                      |                      |   |  |  |  |  |  |
|             |                      |                      |   |  |  |  |  |  |

EPA SAMPLE NO.

NASBFF04WP007

Lab Name: EA LABORATORIES Report#: 981036 Client: FUEL FAR Method: 602 SDG No.: Lab Code: EAENG WATER atrix: (soil/water) Lab Sample ID: #9807472 5.0 (g/mL) <u>M</u>L Sample wt/vol: Lab File ID: VB2A4233.D Level: (low/med) Date Sampled: 6/18/98 Date Analyzed: 7/2/98 % Moisture: not dec. ---GC Column: DB-VRX Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Concentration Units: CAS No. Compound (ug/L or ug/Kg) ug/L Q 1634-04-4 Methyl t-Butyl Ether 1 U 71-43-2 Benzene 1 U 108-88-3 Toluene 1 100-41-4 Ethylbenzene 1 U m&p-Xylenes 3 95-47-6 o-Xylene 2

EPA SAMPLE NO.

NASBFF04WP008

A LABORATORIES Report#: 981036

| Lab Name:      | EA LABOR | RATORIES |          |          | Report#:    | 981036    |               |            |      |
|----------------|----------|----------|----------|----------|-------------|-----------|---------------|------------|------|
| Lab Code:      | EAENG    | _        | Client:  | FUEL FAR | Method:     | 602       |               | SDG No.:   | ·    |
| Matrix: (soil  | /water)  | WATER    | -        |          |             | Lat       | Sample ID:    | #9807473   |      |
| Sample wt/vo   | ol:      | 5.0      | (g/mL)   | ML_      |             |           | Lab File ID   | VB2A4217.D | )    |
| Level: (lov    | w/med)   |          | <u>-</u> |          |             | Da        | te Sampled:   | 6/18/98    |      |
| % Moisture:    | not dec. |          | •        |          |             | Da        | te Analyzed:  | 7/2/98     |      |
| GC-Column:     | DB-VRX   |          | ID:_     | 0.45(m   | ım)         | Dil       | ution Factor: | . 1.0 .    |      |
| Soil Extract V | Volume:  |          | (uL)     |          |             | Soil Alio | juot Volume:  |            | (uL) |
| CAS            | S No.    | Compound |          | (u       | Concentrati |           | ug/L          | Q          |      |

| CAS No.   | Compound             | (ug/L or ug/Kg) | ug/L | Q |
|-----------|----------------------|-----------------|------|---|
| 1634-04-4 | Methyl t-Butyl Ether |                 | 1    | U |
| 71-43-2   | Benzene              |                 | 1    | U |
| 108-88-3  | Toluene              |                 | 1    |   |
| 100-41-4  | Ethylbenzene         |                 | 1    | U |
|           | m&p-Xylenes          |                 | 2    |   |
| 95-47-6   | o-Xylene             |                 | 1    | U |
|           |                      |                 |      |   |
|           |                      |                 |      |   |
|           |                      |                 |      |   |
|           |                      |                 |      |   |
|           |                      |                 |      |   |
|           |                      |                 |      |   |
|           |                      |                 |      |   |
|           |                      |                 |      |   |
|           |                      |                 |      |   |
|           |                      |                 |      |   |
|           |                      |                 |      |   |
|           |                      |                 |      |   |
|           |                      |                 |      |   |
|           |                      |                 |      |   |
|           |                      |                 |      |   |
|           |                      |                 |      |   |

EPA SAMPLE NO.

| Lab Name:    | EA LABOR    | RATORIES       |                                       | Report#:                                         | 981         | 036                                    |             |      |
|--------------|-------------|----------------|---------------------------------------|--------------------------------------------------|-------------|----------------------------------------|-------------|------|
| Lab Code:    | EAENG       |                | lient: FUEL FA                        | R Method:                                        | 602         |                                        | SDG No.:    |      |
| atrix: (so   | oil/water)  | WATER          |                                       |                                                  |             | Lab Sample ID:                         | #9807474    |      |
| Sample wt/   | vol:        | (g             | /mL) ML                               | -                                                |             | Lab File ID:                           | VB2A4218.I  | )    |
| Level: (le   | ow/med)     |                |                                       |                                                  |             | Date Sampled:                          | 6/18/98     |      |
| % Moisture   | e: not dec. |                |                                       |                                                  |             | Date Analyzed:                         | 7/2/98      |      |
| GC Column    | : DB-VRX    |                | ID:0.45                               | _(mm)                                            |             | Dilution Factor:                       | 1.0         |      |
| Soil Extract | Volume:     | (u             | L)                                    |                                                  | Soil        | Aliquot Volume:                        |             | (uL) |
|              |             |                |                                       | Concentra                                        |             |                                        |             |      |
|              | AS No.      | Compound       |                                       | (ug/L or ug/                                     | Kg)         | ug/L                                   | Q           |      |
| 16           | 34-04-4     | Methyl t-Butyl | Ether                                 |                                                  |             | 1                                      | U           |      |
| 71           | -43-2       | Benzene        |                                       |                                                  |             | 1                                      | U           |      |
| 10           | 8-88-3      | Toluene        |                                       |                                                  |             | 2                                      |             |      |
| <u> </u>     | 0-41-4      | Ethylbenzene   |                                       | <del> </del>                                     |             | 1                                      | U           |      |
|              |             | m&p-Xylenes    |                                       | <u> </u>                                         |             | 2                                      |             |      |
| 95           | -47-6       | o-Xylene       | · · · · · · · · · · · · · · · · · · · |                                                  |             | 1                                      |             |      |
|              | 770         | o Hylono       |                                       | <u> </u>                                         |             |                                        | <del></del> |      |
| -            |             |                |                                       | <del>-  </del>                                   |             |                                        |             |      |
|              | <del></del> |                |                                       |                                                  |             |                                        |             |      |
| <u> </u>     |             |                |                                       |                                                  |             |                                        |             |      |
|              |             |                |                                       | <u> </u>                                         |             |                                        |             |      |
|              |             |                |                                       |                                                  |             |                                        |             |      |
| <u> </u> _   | ***         |                |                                       |                                                  |             |                                        |             |      |
|              |             |                |                                       |                                                  |             |                                        | <del></del> |      |
|              |             |                |                                       |                                                  |             |                                        |             |      |
|              |             |                |                                       |                                                  |             |                                        |             |      |
|              |             |                |                                       |                                                  |             |                                        |             |      |
|              |             |                |                                       | <u> </u>                                         |             | ·                                      |             |      |
|              |             |                |                                       | <del>  </del>                                    | ,           |                                        |             |      |
|              | * '         |                |                                       |                                                  | <del></del> |                                        |             |      |
|              |             |                |                                       | <u> </u>                                         |             |                                        |             |      |
| -            | <del></del> |                |                                       | <del> </del>                                     |             | •                                      |             |      |
| -            |             | ·              |                                       | -                                                |             |                                        |             |      |
|              |             |                |                                       | <del> </del> -                                   |             |                                        |             |      |
|              |             |                |                                       |                                                  |             |                                        |             |      |
|              |             |                |                                       |                                                  |             |                                        |             |      |
| L            |             |                |                                       |                                                  |             | \ <u></u>                              |             |      |
|              |             |                |                                       |                                                  |             |                                        |             |      |
|              |             |                | ****                                  |                                                  |             |                                        |             |      |
|              |             |                |                                       |                                                  |             |                                        |             |      |
|              |             |                |                                       |                                                  |             |                                        |             |      |
|              |             |                |                                       |                                                  | _           |                                        |             |      |
|              | <del></del> |                |                                       |                                                  |             | ······································ |             |      |
|              |             |                |                                       | <del>                                     </del> |             |                                        |             |      |

EPA SAMPLE NO.

| Lab Name   | EA LABOR     | RATORIES             | Report#: 98     | 1036                                  |                                                  |      |
|------------|--------------|----------------------|-----------------|---------------------------------------|--------------------------------------------------|------|
| Lab Code   | : EAENG      | Client: FUEL FAR     | Method: 602     |                                       | SDG No.:                                         |      |
| Matrix: (  | soil/water)  | WATER                |                 | Lab Sample ID:                        | #9807475                                         |      |
| Sample w   | t/vol:       | 5.0(g/mL)ML          |                 | Lab File ID:                          | VB2A4235.I                                       | )    |
| Level:     | (low/med)    |                      |                 | Date Sampled:                         | 6/18/98                                          |      |
| % Moistu   | re: not dec. |                      |                 | Date Analyzed:                        | 7/2/98                                           |      |
| GC Colun   | nn:_DB-VRX   | ID:0.45(r            | nm)             | Dilution Factor:                      | 1.0                                              |      |
| Soil Extra | act Volume:  | (uL)                 | Soil            | l Aliquot Volume:                     |                                                  | (uL) |
|            | G 4 G 3 Z    | G                    | Concentration U |                                       | 0                                                |      |
| _          | CAS No.      |                      | ug/L or ug/Kg)  | ug/L                                  | Q                                                |      |
| Į.         | 1634-04-4    | Methyl t-Butyl Ether |                 | 1                                     | U                                                |      |
| [7         | 71-43-2      | Benzene              |                 | 1                                     | U                                                |      |
|            | 108-88-3     | Toluene              |                 | 1                                     | U                                                |      |
| į.         | 100-41-4     | Ethylbenzene         |                 | 1                                     | U                                                |      |
| F          |              | m&p-Xylenes          |                 | 1                                     |                                                  |      |
| }          | 95-47-6      | o-Xylene             |                 | 1                                     | U                                                |      |
| }          | 93-47-0      | 0-Aytene             |                 | <del></del>                           | <del>                                     </del> |      |
| ļ          |              |                      | <del></del>     |                                       | <del> </del>                                     |      |
| Ļ          |              |                      |                 |                                       |                                                  |      |
|            |              |                      | <u> </u>        |                                       |                                                  |      |
|            |              |                      |                 |                                       |                                                  |      |
|            |              |                      |                 |                                       |                                                  |      |
|            |              |                      |                 |                                       |                                                  |      |
| f          |              |                      |                 |                                       |                                                  |      |
| <u> </u>   |              |                      |                 | · · · · · · · · · · · · · · · · · · · | <del> </del>                                     |      |
|            |              |                      |                 |                                       |                                                  |      |
| }          |              |                      |                 |                                       | <del> </del> -                                   |      |
| <u> </u> _ |              |                      |                 |                                       | <del> </del>                                     |      |
| L          |              |                      |                 |                                       | ļ                                                |      |
| L          |              |                      |                 |                                       | <u> </u>                                         |      |
| L          |              |                      |                 |                                       |                                                  |      |
|            |              |                      |                 |                                       | <u> </u>                                         |      |
| Γ          |              |                      |                 |                                       |                                                  |      |
| Ī          |              |                      |                 |                                       |                                                  |      |
| t          | <del></del>  |                      |                 |                                       |                                                  |      |
| r          |              |                      |                 | ·····                                 | ·                                                | •    |
| <u> </u> - |              |                      | <del> </del>    | <del></del>                           | <del>                                     </del> |      |
| }          |              |                      |                 | · · · · · · · · · · · · · · · · · · · | <del> </del>                                     |      |
| <b> </b>   |              |                      |                 |                                       | <del>                                     </del> |      |
| L          |              |                      |                 | <del></del>                           | <b> </b>                                         |      |
| L          |              |                      |                 |                                       |                                                  |      |
|            |              |                      |                 |                                       |                                                  |      |
| Γ          |              |                      |                 |                                       |                                                  |      |
| 1          |              |                      |                 |                                       |                                                  |      |
| T T        | <del></del>  |                      |                 |                                       |                                                  |      |
| ļ-         |              |                      | <del> </del>    |                                       | +                                                |      |

EPA SAMPLE NO.

| Lab Name:                                        | EA LABO        | RATORIES             |             | Report#:                              | 981         | 036              |           |       |
|--------------------------------------------------|----------------|----------------------|-------------|---------------------------------------|-------------|------------------|-----------|-------|
| Lab Code:                                        | EAENG          | Client:              | FUEL FAR    | Method:                               | 602         | · <u></u>        | SDG No.:  |       |
| atrix: (so                                       | oil/water)     | WATER                |             |                                       |             | Lab Sample ID:   | #9807476  | _     |
| Sample wt/                                       | vol:           | 5.0 (g/mL)           | ML          |                                       |             | Lab File ID:     | VB2A4220. | D     |
| Level: (l                                        | ow/med)        |                      |             |                                       |             | Date Sampled:    | 6/18/98   | _     |
| % Moisture                                       | e: not dec.    |                      |             |                                       |             | Date Analyzed:   | 7/2/98    | _     |
| GC Column                                        | ı:_DB-VRX      | ID:                  | 0.45 (n     | nm)                                   |             | Dilution Factor: | 1.0       | _     |
| Soil Extract                                     | Volume:        | (uL)                 |             |                                       | Soil        | Aliquot Volume:  |           | (uL)  |
|                                                  |                |                      |             | Concentrat                            |             |                  |           |       |
| C                                                | AS No.         | Compound             |             | ug/L or ug/F                          | ζg)<br>     | ug/L             | <b>Q</b>  | _     |
| <u> </u>                                         | 34-04-4        | Methyl t-Butyl Ether |             |                                       |             | 1                | U         |       |
|                                                  | -43-2          | Benzene              |             |                                       |             | 1                | U         |       |
|                                                  | 8-88-3         | Toluene              |             |                                       |             | 1                | U         |       |
| 10                                               | 0-41-4         | Ethylbenzene         |             |                                       |             | 14               |           |       |
| -                                                |                | m&p-Xylenes          |             |                                       |             | 27               |           |       |
| 95                                               | -47-6          | o-Xylene             |             |                                       |             | 10               |           |       |
|                                                  |                |                      |             |                                       |             |                  |           |       |
| <u> </u>                                         |                |                      |             |                                       |             |                  |           |       |
| <b> -</b> -                                      |                |                      | ··          |                                       |             | <del></del>      |           |       |
| -                                                |                |                      |             |                                       |             |                  |           |       |
|                                                  |                |                      |             |                                       |             | <del></del>      |           |       |
| <u> </u>                                         |                | <del></del>          |             |                                       |             |                  |           |       |
| -                                                |                |                      |             |                                       |             |                  |           | I     |
|                                                  | <del></del>    |                      |             |                                       |             |                  |           |       |
| -                                                | - <del>-</del> |                      |             |                                       |             |                  |           | :<br> |
|                                                  |                |                      |             | ****                                  |             |                  |           | ı<br> |
| -                                                |                |                      |             |                                       |             |                  |           | ı     |
| -                                                |                |                      |             |                                       |             |                  |           | ı     |
| <u> </u>                                         |                |                      | <del></del> |                                       |             |                  |           |       |
| <u> </u>                                         |                |                      |             |                                       |             | -,               |           |       |
| <u>-</u>                                         | <del></del>    |                      |             | *******                               | -           |                  |           |       |
| -                                                |                |                      |             |                                       |             |                  |           |       |
| -                                                | <del></del>    | <del></del>          |             |                                       |             |                  |           | •     |
|                                                  |                |                      |             |                                       |             |                  |           |       |
| <b>-</b> -                                       |                |                      |             |                                       |             |                  |           |       |
| <del>                                     </del> |                |                      |             | · · · · · · · · · · · · · · · · · · · | <del></del> | ·                |           |       |
| -                                                |                |                      |             |                                       |             |                  |           |       |
| -                                                |                | <u></u>              |             |                                       |             |                  |           |       |
| <u> </u>                                         |                |                      |             |                                       |             |                  |           |       |
| <b> -</b> -                                      |                |                      |             |                                       |             |                  |           |       |
| -                                                |                |                      |             | <u> </u>                              |             |                  |           |       |
| <del> </del>                                     | <del></del>    |                      |             |                                       |             |                  |           |       |

EPA SAMPLE NO.

NA CREENAWROL

|              |            |                      |              |                                       | TAUSDIT OA (                                     | VI UIZ |
|--------------|------------|----------------------|--------------|---------------------------------------|--------------------------------------------------|--------|
| Lab Name:    | EA LABO    | RATORIES             | Report#:     | 981036                                |                                                  |        |
| Lab Code:    | EAENG      | Client: FUEL FAR     | Method:      | 602                                   | SDG No.:                                         |        |
| Matrix: (so  | il/water)  | WATER                |              | Lab Sample ID:                        | #9807477                                         |        |
| Sample wt/v  | vol:       | (g/mL)ML             |              | Lab File ID:                          | VB2A4221.I                                       | )      |
| Level: (lo   | ow/med)    |                      |              | Date Sampled:                         | 6/18/98                                          |        |
| % Moisture   | : not dec. |                      |              | Date Analyzed:                        | 7/2/98                                           |        |
| GC_Column    | :_DB-VRX_  | ID: <u>0.45</u> (1   | mm)          | Dilution Factor:                      | 1.0                                              |        |
| Soil Extract | Volume:    | (uL)                 |              | Soil Aliquot Volume:                  |                                                  | (uL)   |
|              |            |                      | Concentrat   | ion Units:                            |                                                  |        |
| CA           | AS No.     | Compound (           | ug/L or ug/F | (g) <u>ug/L</u>                       | Q                                                |        |
| 16           | 34-04-4    | Methyl t-Butyl Ether |              | 1                                     | U                                                |        |
| 71           | -43-2      | Benzene              |              | 1                                     | U                                                |        |
| 10           | 8-88-3     | Toluene              |              | 1                                     | U                                                |        |
| 10           | 0-41-4     | Ethylbenzene         |              | 1                                     | U                                                |        |
|              |            | m&p-Xylenes          |              | 1                                     |                                                  |        |
| 95           | -47-6      | o-Xylene             |              | 1                                     | U                                                |        |
|              |            |                      |              |                                       |                                                  |        |
|              |            |                      |              |                                       |                                                  |        |
|              |            |                      |              |                                       |                                                  |        |
| _            |            |                      |              |                                       |                                                  |        |
| <u> </u>     |            |                      |              |                                       |                                                  |        |
|              |            |                      |              |                                       |                                                  |        |
| [-           |            |                      |              |                                       |                                                  |        |
|              |            |                      |              |                                       |                                                  |        |
|              |            |                      |              |                                       |                                                  |        |
|              |            |                      |              |                                       |                                                  |        |
|              |            |                      |              |                                       |                                                  |        |
|              |            |                      |              |                                       |                                                  |        |
|              |            |                      |              |                                       |                                                  |        |
|              |            |                      |              |                                       |                                                  |        |
|              |            |                      |              | <u> </u>                              |                                                  |        |
|              |            |                      | <u></u>      |                                       |                                                  |        |
|              |            |                      | <u> </u>     |                                       |                                                  |        |
|              |            |                      |              |                                       |                                                  |        |
|              |            |                      |              |                                       |                                                  |        |
| _            |            |                      | 1            |                                       |                                                  |        |
|              |            |                      |              |                                       |                                                  |        |
|              |            |                      | <u> </u>     | · · · · · · · · · · · · · · · · · · · |                                                  |        |
| -            |            |                      |              |                                       |                                                  |        |
|              |            |                      |              |                                       |                                                  |        |
| <b>├</b>     |            |                      | <del> </del> | <del></del>                           | <del>                                     </del> |        |

EPA SAMPLE NO.

NASBFF04WP013 Lab Name: EA LABORATORIES Report#: 981036 Lab Code: EAENG Client: FUEL FAR Method: 602 SDG No.: Lab Sample ID: #9807478 Tatrix: (soil/water) WATER Sample wt/vol: 5.0 (g/mL) <u>ML</u> Lab File ID: VB2A4222.D Level: (low/med) Date Sampled: 6/18/98 % Moisture: not dec. Date Analyzed: 7/2/98 GC-Column:-DB-VRX \_\_\_\_\_ID:\_\_\_0.45\_\_\_(mm) \_\_\_\_ Dilution.Factor:\_\_\_\_1.0\_\_\_ Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Concentration Units: CAS No. Compound (ug/L or ug/Kg) ug/L Q 1634-04-4 Methyl t-Butyl Ether 1 U 71-43-2 Benzene 1 U 108-88-3 Toluene 1 100-41-4 Ethylbenzene 1 U m&p-Xylenes 1 95-47-6 o-Xylene 1 U

EPA SAMPLE NO.

|              |              |             |               |             |               |             |                                       | NASBFF04V     | VP014 |
|--------------|--------------|-------------|---------------|-------------|---------------|-------------|---------------------------------------|---------------|-------|
| Lab Name:    | EA LABOI     | RATORIES    |               |             | Report#:      | 981036      | 5                                     |               |       |
| Lab Code:    | EAENG        | _           | Client:       | FUEL FAR    | Method:       | 602         |                                       | SDG No.:      |       |
| Matrix: (so  | il/water)    | WATER       | -             |             |               | La          | b Sample ID:                          | #9807479      |       |
| Sample wt/v  | ol:          | 5.0         | (g/mL)        | ML          |               |             | Lab File ID:                          | VB2A4223.D    | )     |
| Level: (lo   | ow/med)      |             |               |             |               | D           | ate Sampled:                          | 6/18/98       |       |
| % Moisture:  | not dec.     |             |               |             |               | Da          | ate Analyzed:                         | 7/2/98        |       |
| -GC-Column   | _DB-VRX_     |             | ID:           | 0.45(       | mm)           | Di          | lution_Factor:                        | 1.0           |       |
| Soil Extract | Volume:      |             | (uL)          |             |               | Soil Ali    | quot Volume:                          |               | (uL)  |
|              |              |             |               |             | Concentra     | tion Units: |                                       |               |       |
| CA           | S No.        | Compound    |               | . (         | (ug/L or ug/l |             | ug/L_                                 | Q             |       |
| 163          | 34-04-4      | Methyl t-Bu | tyl Ether     |             |               |             |                                       | U             |       |
| 71-          | 43-2         | Benzene     |               |             |               | . 1         |                                       | U             |       |
| 108          | 3-88-3       | Toluene     |               |             |               | - 3         | 3                                     |               |       |
| 100          | )-41-4       | Ethylbenzen | ie            |             |               | 1           |                                       | U             |       |
|              |              | m&p-Xylen   | es            |             |               | 1           | l                                     |               |       |
| 95-          | -47-6        | o-Xylene    |               |             |               | 1           |                                       | U             |       |
|              |              |             |               |             |               |             |                                       |               |       |
|              |              |             |               |             |               |             |                                       |               |       |
|              |              |             |               |             |               |             |                                       |               |       |
|              |              |             |               |             |               |             |                                       |               |       |
|              |              |             | <u>.</u>      |             |               |             |                                       |               |       |
|              |              |             |               |             |               |             |                                       |               |       |
|              |              |             |               |             |               |             | · · · · · · · · · · · · · · · · · · · |               |       |
|              |              |             |               |             |               |             | · ·                                   |               |       |
|              |              |             |               |             |               |             |                                       |               |       |
| <u> </u>     |              |             |               |             | ļ <u>.</u>    |             |                                       |               |       |
|              |              |             |               |             | ļ             |             |                                       |               |       |
|              | <del> </del> |             |               |             | ļ——           |             |                                       |               |       |
| <u> </u>     |              | ·           | <del></del> - |             | -             |             | · · · · · · · · · · · · · · · · · · · | <u> </u>      |       |
| <u> </u>     |              |             | <del></del>   | <del></del> | <del></del>   |             |                                       | <u> </u>      |       |
|              |              |             |               |             | <del> </del>  |             |                                       | <u> </u>      |       |
| <u> </u>     |              |             |               |             | <del> </del>  |             |                                       | <del>  </del> |       |
|              |              |             |               |             | <del> </del>  |             |                                       |               |       |
| <u> </u>     | <del></del>  |             |               |             | <u> </u>      |             |                                       |               |       |
|              |              |             |               |             |               |             |                                       |               |       |

3/90

EPA SAMPLE NO.

NASBFF04WP015

| Lab Name: EA LABORATO | ORIES                                 | Report#: 981036          |                     |
|-----------------------|---------------------------------------|--------------------------|---------------------|
| Lab Code: EAENG       | Client: FUEL FAR                      | Method: 602              | SDG No.:            |
| atrix: (soil/water) W | ATER                                  | Lab Sample ID:           | #9807480            |
| Sample wt/vol:        | 5.0 (g/mL) ML                         | Lab File ID              | : <u>VB2A4224.D</u> |
| Level: (low/med)      | <del></del>                           | Date Sampled:            | 6/18/98             |
| % Moisture: not dec.  | <u></u>                               | Date Analyzed:           | 7/2/98              |
| -GC Column:-DB-VRX-   | ID:0.45(m                             | nm)Dilution Factor:      |                     |
| Soil Extract Volume:  | (uL)                                  | Soil Aliquot Volume      | (uL)                |
|                       |                                       | Concentration Units:     |                     |
|                       |                                       | ug/L or ug/Kg) ug/L ug/L | Q                   |
|                       | hyl t-Butyl Ether                     | 1                        | U                   |
| 71-43-2 Benz          |                                       | 42                       |                     |
| 108-88-3 Tolu         |                                       | 100                      |                     |
|                       | lbenzene                              | 7                        |                     |
|                       | o-Xylenes                             | 22                       |                     |
| 95-47-6 o-Xy          | /lene                                 | 18                       |                     |
|                       | <u>.</u>                              |                          |                     |
|                       |                                       |                          |                     |
|                       |                                       | ·                        |                     |
|                       |                                       |                          |                     |
|                       |                                       |                          |                     |
|                       |                                       |                          |                     |
|                       |                                       |                          |                     |
|                       |                                       |                          |                     |
|                       |                                       |                          |                     |
|                       |                                       | ·····                    |                     |
|                       | · · · · · · · · · · · · · · · · · · · |                          |                     |
|                       |                                       |                          |                     |
|                       |                                       |                          |                     |
|                       |                                       |                          |                     |
| <del></del>           |                                       |                          |                     |
|                       | · · · · · · · · · · · · · · · · · · · |                          |                     |
|                       |                                       |                          |                     |
|                       |                                       |                          | <del></del>         |
|                       |                                       |                          |                     |
|                       |                                       |                          | <del> </del>        |
|                       |                                       |                          |                     |
|                       |                                       |                          | <del> </del>        |
|                       |                                       |                          | <del> </del>        |
|                       |                                       |                          |                     |
| <del></del>           |                                       |                          |                     |
|                       |                                       |                          |                     |

EPA SAMPLE NO.

NASRFF04WP016

|            |                                       |                      |               |                      | NASDEE04 W                                       | 1010 |
|------------|---------------------------------------|----------------------|---------------|----------------------|--------------------------------------------------|------|
| Lab Name   | EA LABO                               | RATORIES             | Report#:      | 981036               | <u></u>                                          |      |
| Lab Code:  | : EAENG                               | Client: FUEL FA      | AR Method:    | 602                  | SDG No.:                                         | ·    |
| Matrix: (  | soil/water)                           | WATER                |               | Lab Sample ID:       | #9807481                                         |      |
| Sample wt  | t/vol:                                | (g/mL)ML             | _             | Lab File ID          | <u>VB2A4244.</u> D                               |      |
| Level:     | (low/med)                             |                      |               | Date Sampled:        | 6/18/98                                          |      |
| % Moistu   | re: not dec.                          |                      |               | Date Analyzed:       | 7/2/98                                           |      |
| GC-Colun   | nn: DB-VRX                            | ID:0.45              | _(mm)         | Dilution Factor:     | 1.0                                              |      |
| Soil Extra | ct Volume:                            | (uL)                 |               | Soil Aliquot Volume: |                                                  | (uL) |
|            |                                       |                      | Concentration | on Units:            |                                                  |      |
| (          | CAS No.                               | Compound             | (ug/L or ug/K | g) ug/L              | Q                                                |      |
| li li      | 1634-04-4                             | Methyl t-Butyl Ether |               | 1                    | U                                                |      |
| L-         | 71-43-2                               | Benzene              |               | 1                    | U                                                |      |
|            | 108-88-3                              | Toluene              |               | 2                    |                                                  |      |
| Ī          | 100-41-4                              | Ethylbenzene         |               | 1                    | U                                                |      |
|            | <u> </u>                              | m&p-Xylenes          |               | 2                    |                                                  |      |
| Ģ          | 95-47-6                               | o-Xylene             |               | 1                    | U                                                |      |
| 1          |                                       |                      |               |                      |                                                  |      |
| t          | · · · · · · · · · · · · · · · · · · · |                      |               |                      |                                                  |      |
| <u> </u>   |                                       |                      |               |                      |                                                  |      |
| -          | <del></del>                           |                      |               |                      |                                                  |      |
| ŀ          |                                       |                      |               | <del></del>          |                                                  |      |
|            |                                       |                      |               |                      |                                                  |      |
| -          | <del></del>                           |                      |               |                      |                                                  |      |
| ŀ          | <u></u>                               |                      |               | <u> </u>             | -                                                |      |
| <br>       |                                       |                      |               |                      |                                                  |      |
| F          |                                       |                      |               |                      |                                                  |      |
| r          |                                       |                      |               | <del></del>          |                                                  |      |
| r          | <del></del>                           |                      |               |                      |                                                  |      |
| r          |                                       |                      |               | <del>,</del>         |                                                  |      |
| r          |                                       |                      |               |                      |                                                  |      |
| j          |                                       |                      |               |                      |                                                  |      |
| -          |                                       |                      |               |                      |                                                  |      |
| <u> </u>   |                                       |                      |               |                      |                                                  | •    |
| F          |                                       |                      |               |                      |                                                  |      |
| <u></u>    |                                       |                      |               | _                    |                                                  |      |
| <u> </u>   |                                       |                      |               |                      |                                                  |      |
| <b> </b> - |                                       |                      |               | _ <del></del>        | <del>  </del>                                    |      |
| }          |                                       |                      |               |                      | <del> </del>                                     |      |
| -          |                                       |                      |               |                      | <del>                                     </del> |      |
| -          |                                       |                      |               | <del></del>          | <del>                                     </del> |      |
| <u> </u> - |                                       | <del> </del>         |               |                      | <del> </del>                                     |      |
| _          |                                       |                      |               |                      |                                                  |      |

EPA SAMPLE NO.

NASBFF04WP017

| Lab Name:                                        | EA LABOI                              | RATORIES             | Report#: 98      | 1036             |                   |             |
|--------------------------------------------------|---------------------------------------|----------------------|------------------|------------------|-------------------|-------------|
| Lab Code:                                        | EAENG                                 | Client: FUEL FAI     | R Method: 602    |                  | SDG No.:          |             |
| atrix: (soi                                      | il/water)                             | WATER                |                  | Lab Sample ID:   | #9807482          |             |
| Sample wt/ve                                     | ol:                                   | 5.0 (g/mL) ML        |                  | Lab File ID      | <u>VB2A4226.1</u> | )           |
| Level: (lo                                       | w/med)                                |                      |                  | Date Sampled:    | 6/18/98           |             |
| % Moisture:                                      | not dec.                              |                      |                  | Date Analyzed:   | 7/2/98            |             |
| -GC Column:                                      | DB-VRX                                | ID:0.45(             | mm)              | Dilution Factor: | 1.0               | <del></del> |
| Soil Extract                                     | Volume:                               | (uL)                 | Soil             | Aliquot Volume:  |                   | (uL)        |
|                                                  |                                       |                      | Concentration Un | nits:            |                   |             |
|                                                  | S No.                                 | _                    | (ug/L or ug/Kg)  | ug/L             | Q                 |             |
| 163                                              | 34-04-4                               | Methyl t-Butyl Ether |                  | 1                | U                 |             |
| 71-4                                             | 43-2                                  | Benzene              |                  | 1                | U                 |             |
| 108                                              | 8-88-3                                | Toluene              |                  | 2                |                   |             |
| 100                                              | )-41-4                                | Ethylbenzene         |                  | 1                | U                 |             |
|                                                  |                                       | m&p-Xylenes          |                  | 2                |                   |             |
| 95-4                                             | 47-6                                  | o-Xylene             |                  | 1                |                   |             |
|                                                  | · · · · · · · · · · · · · · · · · · · |                      |                  |                  |                   |             |
|                                                  | <u></u>                               |                      |                  | <del></del>      |                   |             |
| <del> </del>                                     | <del></del>                           |                      | <del></del>      |                  |                   |             |
| <u> </u>                                         |                                       |                      |                  | <del></del>      | <del> </del>      |             |
| ļ                                                |                                       |                      |                  |                  |                   |             |
| <u> </u>                                         | ·····                                 |                      |                  |                  |                   |             |
|                                                  |                                       |                      |                  |                  |                   |             |
|                                                  |                                       |                      |                  |                  |                   |             |
|                                                  |                                       |                      |                  |                  |                   |             |
|                                                  |                                       |                      | * -              |                  |                   |             |
|                                                  |                                       |                      |                  |                  |                   |             |
|                                                  | · · · · · · · · · · · · · · · · · · · |                      |                  |                  |                   |             |
| <del></del>                                      | <del></del>                           |                      | <del> </del>     |                  |                   |             |
| <u> </u>                                         | · /-/                                 |                      |                  | <del></del>      |                   |             |
|                                                  |                                       |                      |                  |                  |                   |             |
| <del></del>                                      |                                       |                      |                  |                  |                   |             |
| <u> </u>                                         |                                       |                      |                  |                  |                   |             |
| -                                                |                                       |                      |                  |                  |                   |             |
| <u> </u>                                         |                                       |                      |                  |                  |                   |             |
| <u> </u>                                         |                                       |                      |                  |                  |                   |             |
|                                                  | ····                                  |                      | <u></u>          |                  |                   |             |
|                                                  |                                       |                      |                  |                  |                   |             |
|                                                  |                                       |                      |                  |                  |                   |             |
|                                                  |                                       |                      |                  |                  |                   |             |
|                                                  | <del></del>                           |                      |                  |                  |                   |             |
|                                                  |                                       |                      |                  |                  |                   |             |
|                                                  |                                       |                      |                  |                  |                   |             |
| <del>                                     </del> |                                       |                      |                  |                  |                   |             |
|                                                  |                                       |                      | <u> </u>         |                  |                   |             |

EPA SAMPLE NO.

NASBFF04WP018

| Lab Name: EA LAB     | BORATORIES     | Report#:     | 981036               |          |
|----------------------|----------------|--------------|----------------------|----------|
| Lab Code: EAENG      | Client: FUEL F | AR Method:   | 602 S                | DG No.:  |
| Matrix: (soil/water) | WATER          |              | Lab Sample ID: #98   | 307483   |
| Sample wt/vol:       | 5.0 (g/mL) ML  | <del>_</del> | Lab File ID: VB      | 2A4227.D |
| Level: (low/med)     |                |              | Date Sampled: 6      | /18/98   |
| % Moisture: not dec. |                |              | Date Analyzed:       | //2/98   |
| GC-Column: DB-VR     | ID:0.45_       | _(mm)        | Dilution Factor:     | 1.0      |
| Soil Extract Volume: | (uL)           |              | Soil Aliquot Volume: | (uL)     |

| Concentration Units: |                      |                          |              |  |  |  |  |  |
|----------------------|----------------------|--------------------------|--------------|--|--|--|--|--|
| CAS No.              | Compound             | (ug/L  or  ug/Kg) $ug/L$ | . Q          |  |  |  |  |  |
| 1634-04-4            | Methyl t-Butyl Ether | 1                        | U            |  |  |  |  |  |
| 71-43-2              | Benzene              | 1                        | U            |  |  |  |  |  |
| 108-88-3             | Toluene              | 2                        |              |  |  |  |  |  |
| 100-41-4             | Ethylbenzene         | 1                        | U            |  |  |  |  |  |
|                      | m&p-Xylenes          | 1                        |              |  |  |  |  |  |
| 95-47-6              | o-Xylene             | 1                        | U            |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
| -                    |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |
|                      |                      |                          | <del> </del> |  |  |  |  |  |
|                      |                      |                          |              |  |  |  |  |  |

EPA SAMPLE NO.

| Lab Name: | EA LABORATORIES | Report#                 | t: 981036 | NASBFF04WP019 |
|-----------|-----------------|-------------------------|-----------|---------------|
| Lab Code: | FAENG           | Client: FIIFI FAR Metho | d· 602    | SDG No :      |

| Lab Code: EAENG      | Client: FUEL FAR Method: | 602 SDG No.:              |
|----------------------|--------------------------|---------------------------|
| atrix: (soil/water)  | WATER                    | Lab Sample ID: #9807484   |
| Sample wt/vol:       | 5.0(g/mL)ML              | Lab File ID: VB2A4228.D   |
| Level: (low/med)     |                          | Date Sampled: 6/18/98     |
| % Moisture: not dec. |                          | Date Analyzed: 7/2/98     |
| GC-Column: DB-VRX    | ID:0.45(mm)              | Dilution Factor:1.0       |
| Soil Extract Volume: | (uL)                     | Soil Aliquot Volume: (uL) |
|                      |                          |                           |

| Concentration Units: |                                       |                 |      |             |  |  |  |
|----------------------|---------------------------------------|-----------------|------|-------------|--|--|--|
| CAS No.              | Compound                              | (ug/L or ug/Kg) | ug/L | Q           |  |  |  |
| 1634-04-4            | Methyl t-Butyl Ether                  |                 | 1    | U           |  |  |  |
| 71-43-2              | Benzene                               |                 | 41   |             |  |  |  |
| 108-88-3             | Toluene                               |                 | 30   |             |  |  |  |
| 100-41-4             | Ethylbenzene                          |                 | 96   |             |  |  |  |
|                      | m&p-Xylenes                           | 24              | 40   |             |  |  |  |
| 95-47-6              | o-Xylene                              | 14              | 40   |             |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
|                      |                                       |                 | · —  |             |  |  |  |
|                      |                                       | <del></del>     |      | <del></del> |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
|                      | · · · · · · · · · · · · · · · · · · · |                 |      |             |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
| . <u> </u>           |                                       |                 |      |             |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
|                      |                                       |                 |      | -           |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
| <del></del>          |                                       |                 |      |             |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
|                      |                                       |                 |      |             |  |  |  |
| <del></del>          |                                       |                 |      |             |  |  |  |
|                      |                                       | <u> </u>        | l    |             |  |  |  |

EPA SAMPLE NO.

Soil Aliquot Volume: (uL)

| Lab Name:     | EA LABORA | TORIES |                    | Report#: | 981036           | NASBFF04WXD1 |
|---------------|-----------|--------|--------------------|----------|------------------|--------------|
| Lab Code:     | EAENG     |        | Client: FUEL FAR   | Method:  | 602              | SDG No.:     |
| Matrix: (soil | /water)   | WATER  |                    |          | Lab Sample ID:   | #9807485     |
| Sample wt/vo  | ol:       | 5.0    | (g/mL) ML          |          | Lab File ID:     | VB2A4229.D   |
| Level: (lov   | w/med)    |        |                    |          | Date Sampled:    | 6/18/98      |
| % Moisture:   | not dec.  |        |                    |          | Date Analyzed:   | 7/2/98       |
| -GC-Column:   | DB-VRX    |        | ID: <u>0.45</u> (r | nm)      | Dilution Factor: | 1.0          |

#### Concentration Units:

\_\_\_\_ (uL)

Soil Extract Volume:

| Concentration Units: |                      |                 |      |   |  |  |  |
|----------------------|----------------------|-----------------|------|---|--|--|--|
| CAS No.              | Compound             | (ug/L or ug/Kg) | ug/L | Q |  |  |  |
| 1634-04-4            | Methyl t-Butyl Ether |                 | 1    | U |  |  |  |
| 71-43-2              | Benzene              |                 | 1    | U |  |  |  |
| 108-88-3             | Toluene              |                 | 3    |   |  |  |  |
| 100-41-4             | Ethylbenzene         |                 | 1    | U |  |  |  |
|                      | m&p-Xylenes          |                 | 2    |   |  |  |  |
| 95-47-6              | o-Xylene             |                 | 1    |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
| <u> </u>             |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
|                      |                      |                 |      |   |  |  |  |
| L                    |                      | <del></del>     |      |   |  |  |  |

EPA SAMPLE NO.

| Lab Name: | EA LABORATORIES | Report         |               | #: <u>981036</u> | NASBFF04WXD2 |  |
|-----------|-----------------|----------------|---------------|------------------|--------------|--|
| I ah Cada | EAENC           | Client: EUEI E | —<br>AD Matho | d: 602           | SDG No.      |  |

| Lab Code: EAENG      | Client: <u>FUEL FAR</u> Method: | 602 SDG No.:                |
|----------------------|---------------------------------|-----------------------------|
| Matrix: (soil/water) | WATER                           | Lab Sample ID: #9807486     |
| Sample wt/vol:       | 5.0 (g/mL) ML                   | Lab File ID: VB2A4230.D     |
| Level: (low/med)     |                                 | Date Sampled: 6/18/98       |
| % Moisture: not dec. | <del></del>                     | Date Analyzed: 7/2/98       |
| GC Column: DB-VRX    | ID:0.45(mm)                     | Dilution-Factor:1.0         |
| Soil Extract Volume: | (nI )                           | Soil Aliquot Volume: (u.L.) |

|           |                      | Concentration Unit | ts:     |          |
|-----------|----------------------|--------------------|---------|----------|
| CAS No.   | Compound             | (ug/L or ug/Kg)    | ug/L_   | Q        |
| 1634-04-4 | Methyl t-Butyl Ether |                    | 1       | U        |
| 71-43-2   | Benzene              |                    | 1       | U        |
| 108-88-3  | Toluene              |                    | 1       | U        |
| 100-41-4  | Ethylbenzene         |                    | 1       | U        |
|           | m&p-Xylenes          |                    | 1       | U        |
| 95-47-6   | o-Xylene             |                    | 1       | U        |
|           |                      |                    |         |          |
|           |                      |                    |         |          |
|           |                      |                    |         |          |
|           |                      |                    |         |          |
|           |                      |                    |         |          |
| ·         |                      |                    | **      |          |
|           |                      |                    |         |          |
|           |                      |                    |         | ļ        |
|           |                      |                    |         |          |
|           |                      |                    |         |          |
|           |                      |                    |         |          |
|           |                      |                    |         |          |
|           |                      |                    |         |          |
|           |                      |                    |         | <u> </u> |
|           |                      |                    |         |          |
|           |                      |                    |         |          |
| <u> </u>  |                      | <del>-  </del>     |         |          |
| <u> </u>  |                      |                    | <u></u> |          |
|           |                      |                    |         |          |
|           |                      |                    |         |          |
| ·         |                      |                    |         |          |
|           | ·                    |                    |         |          |
|           |                      |                    |         |          |

| _ | EPA SAMPLE NO. |
|---|----------------|
|   | VBLK01         |

| Lab Name: EA LABO    | PRATORIES            | Report#: 981036                                  | VBLK01                                           |
|----------------------|----------------------|--------------------------------------------------|--------------------------------------------------|
| Lab Code: EAENG      | Client: FUEL FAI     |                                                  | SDC No.                                          |
|                      | <del></del>          |                                                  | SDG No.:                                         |
| Matrix: (soil/water) | WATER                | Lab Sample ID                                    | <u>VB807014</u>                                  |
| Sample wt/vol:       | (g/mL)ML             | Lab File II                                      | ): <u>VB2A4197.</u> D                            |
| Level: (low/med)     |                      | Date Sampled:                                    |                                                  |
| % Moisture: not dec. |                      | Date Analyzed:                                   | 7/1/98                                           |
| GC Column: DB-VRX    | ID:0.45(             | mm) Dilution Factor                              | :1.0                                             |
| Soil Extract Volume: | (uL)                 | Soil Aliquot Volume                              | :(uL)                                            |
|                      |                      | Concentration Units:                             |                                                  |
| CAS No.              | Compound             | (ug/L or ug/Kg) ug/L                             | Q                                                |
| 1634-04-4            | Methyl t-Butyl Ether | 1                                                | Ū                                                |
| 71-43-2              | Benzene              | 1                                                | U                                                |
| 108-88-3             | Toluene              | 1                                                | U                                                |
| 100-41-4             | Ethylbenzene         | 1                                                | Ü                                                |
|                      | m&p-Xylenes          | 1                                                | U                                                |
| 95-47-6              | o-Xylene             | 1                                                | U                                                |
|                      |                      |                                                  | <del>                                     </del> |
| <del></del>          |                      | <del> </del>                                     | <del> </del>                                     |
| <del></del>          |                      | <del> </del>                                     |                                                  |
|                      |                      |                                                  |                                                  |
|                      |                      |                                                  |                                                  |
|                      |                      |                                                  |                                                  |
|                      |                      |                                                  |                                                  |
|                      |                      |                                                  |                                                  |
|                      |                      | <u> </u>                                         |                                                  |
|                      |                      | <del> </del>                                     |                                                  |
|                      |                      |                                                  |                                                  |
|                      |                      | <del></del>                                      | <del> </del>                                     |
|                      |                      |                                                  |                                                  |
|                      |                      |                                                  |                                                  |
|                      |                      |                                                  |                                                  |
|                      | ·                    |                                                  |                                                  |
|                      |                      |                                                  |                                                  |
|                      |                      | <u> </u>                                         |                                                  |
|                      |                      |                                                  | <del> </del>                                     |
|                      |                      | <del> </del>                                     |                                                  |
| <del> </del>         |                      | <del>                                     </del> | <del> </del>                                     |
|                      |                      |                                                  |                                                  |
|                      |                      | <del>                                     </del> | <del> </del>                                     |

|                      | 11                   | A                      | EPA SAMPLE NO.    |
|----------------------|----------------------|------------------------|-------------------|
|                      | VOLATILE ORGANIC     | CS ANALYSIS DATA SHEET | VBLK02            |
| Lab Name: EA LA      | BORATORIES           | Report#: 981036        | V BLRU2           |
| Lab Code: EAEN       | G Client: FUEL FAR   | Method: 602            | SDG No.:          |
| atrix: (soil/water)  | WATER                | Lab Sample ID:         | <u>VB807023</u>   |
| Sample wt/vol:       |                      | Lab File ID:           | <u>VB2A4239.D</u> |
| Level: (low/med)     |                      | Date Sampled:          |                   |
| % Moisture: not de   | c                    | Date Analyzed:         | 7/2/98            |
| GC Column: DB-VF     | ID: <u>0.45</u> (r   | mm) Dilution Factor:   | 1.0               |
| Soil Extract Volume: | (uL)                 | Soil Aliquot Volume:   | (uL)              |
|                      |                      | Concentration Units:   |                   |
| CAS No.              | Compound (           | ug/L or ug/Kg) ug/L    | Q                 |
| 1634-04-4            | Methyl t-Butyl Ether | 1                      | U                 |
| 71-43-2              | Benzene              | 1                      | U                 |
| 108-88-3             | Toluene              | 1                      | U                 |
| 100-41-4             | Ethylbenzene         | 1                      | U                 |
|                      | m&p-Xylenes          | 1                      | U                 |
| 95-47-6              | o-Xylene             | 1                      | U                 |
|                      |                      |                        |                   |
|                      |                      |                        |                   |
|                      |                      |                        |                   |
|                      |                      | 17.                    |                   |
|                      |                      |                        |                   |
|                      |                      |                        |                   |
|                      |                      |                        |                   |
|                      |                      |                        |                   |
| 1                    |                      |                        | 1                 |

B. TPH-GRO

EPA SAMPLE NO.

NASBFF04WP001

| Lab Name: EA LABORATORIES    | Report#: 981036                             |
|------------------------------|---------------------------------------------|
| Lab Code: EA ENG Client: FUE | EL FAR Method: 4.2.17 SDG No.:              |
| rix: (soil/water) WATER      | Lab Sample ID: #9807464                     |
| Sample wt/vol: 5.0 (g/mL) N  | Lab File ID: VD4J2979.D                     |
| Level: (low/med)             | Date Sampled: 6/18/98                       |
| % Moisture: not dec.         | Date Analyzed: 6/30/98                      |
| GC Column: DB-624 ID: 0.     | 53 (mm) Dilution Factor: 1.0                |
| Soil Extract Volume: (uL)    | Soil Aliquot Volume: (uL)                   |
| CAS No. Compound             | Concentration Units: (ug/L or ug/Kg) ug/L Q |
| TPH-Gasoline Range           | 2400 E                                      |
|                              |                                             |
|                              |                                             |
|                              |                                             |
|                              |                                             |
|                              |                                             |
|                              |                                             |
|                              |                                             |
|                              |                                             |
|                              |                                             |
|                              |                                             |
|                              |                                             |
|                              |                                             |
|                              |                                             |
|                              |                                             |
|                              |                                             |
|                              | ·                                           |
|                              |                                             |
|                              |                                             |
|                              |                                             |
|                              |                                             |
|                              |                                             |

EPA SAMPLE NO.

NASBFF04WPRB1

|             |                  |                                       |                       |                         |                                              | INASBERU4               | WLKDI |
|-------------|------------------|---------------------------------------|-----------------------|-------------------------|----------------------------------------------|-------------------------|-------|
| Lab Name:   | EA LABOR         | RATORIES                              |                       | Report#:                | 981036                                       |                         |       |
| Lab Code:   | EA ENG           | Clie                                  | ent: <u>FUEL FA</u> R | Method:                 | 4.2.17                                       | SDG No.:                |       |
| Matrix: (se | oil/water)       | WATER                                 |                       |                         | Lab Sample                                   | ID: <u>#9807465</u>     | _     |
| Sample wt/  | vol:             | 5.0 (g/n                              | nL) ML                |                         | Lab Fil                                      | e ID: <u>VD4J2982.1</u> | 2     |
| Level: (    | low/med)         |                                       |                       |                         | Date Samp                                    | led: 6/18/98            | -     |
| % Moisture  | e: not dec.      |                                       |                       |                         | Date Analy                                   | zed: <u>6/30/98</u>     | _     |
| GC-Colum    | n: <u>DB-624</u> |                                       | ID: <u>0.53</u> (r    | nm)                     | Dilution Fa                                  | ctor:1.0                |       |
| Soil Extrac | t Volume:        | (uL)                                  | )                     |                         | Soil Aliquot Vol                             | ume:                    | (uL)  |
| C           | AS No.           | Compound                              | (                     | Concentrating/L or ug/l |                                              | Q                       |       |
| Г           |                  | TPH-Gasoline F                        | Range                 | 1                       | 10                                           | T U                     | 1     |
| -           |                  |                                       |                       |                         |                                              |                         |       |
|             |                  |                                       |                       |                         |                                              |                         |       |
| -           |                  |                                       |                       |                         |                                              |                         | 1     |
| -           |                  |                                       |                       |                         |                                              | -                       | 1     |
|             |                  |                                       | <u> </u>              |                         |                                              |                         | 1     |
|             |                  |                                       |                       |                         |                                              |                         | ]     |
|             |                  |                                       |                       |                         |                                              |                         | 1     |
|             |                  |                                       |                       |                         |                                              |                         | -     |
| -           |                  |                                       |                       | +                       |                                              |                         | -     |
| <u> </u> -  |                  |                                       | <del></del>           | 1                       |                                              |                         | 1     |
|             |                  |                                       |                       |                         |                                              |                         | ]     |
|             |                  |                                       |                       |                         |                                              |                         | -     |
| -           |                  |                                       |                       | -                       |                                              |                         | _     |
| -           | ···              |                                       |                       |                         | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> |                         | 1     |
|             |                  |                                       |                       |                         |                                              |                         | ]     |
| _           |                  |                                       |                       |                         |                                              |                         |       |
| -           |                  |                                       |                       | <del> </del>            |                                              |                         |       |
| -           |                  |                                       |                       | <del> </del>            |                                              |                         | ,     |
| <u>-</u> -  |                  |                                       |                       |                         |                                              |                         | _     |
|             |                  |                                       |                       |                         |                                              |                         |       |
| _           |                  | · · · · · · · · · · · · · · · · · · · |                       | ļ                       |                                              |                         |       |
| -           |                  |                                       |                       | <del> </del>            |                                              |                         | 4     |
| -           |                  |                                       |                       | -                       |                                              |                         | 1     |
| -           |                  |                                       |                       |                         |                                              |                         | †     |
|             |                  |                                       |                       |                         | · · · · · · · · · · · · · · · · · · ·        |                         | 1     |
|             |                  |                                       |                       | <u> </u>                |                                              | Î                       | 1     |

19 Loveton Circle Sparks, MD 21152 Telephone: 410-771-4920 Fax: 410-771-4407



July 22, 1998

Mr. John Carnright EA Engineering, Science, & Technology, Inc. 3 Washington Center Newburgh, NY 12550

Re: Fuel Farm (29600.35)

Dear Mr. Carnright:

Enclosed is our report on the analysis of three water samples collected for the Fuel Farm project on 18 June 1998. The invoice is included.

Please contact me if you have any questions or require further information and refer to report 981037. Unless other arrangements are made, we reserve the right to dispose of your samples sixty (60) days from the date of this letter. We will retain the raw data for seven years from this date.

Sincerely,

David F. Brennan

Laboratory Project Manager

David J. Brennan

enclosure

## LABORATORY DATA REPORT

Prepared for:

Fuel Farm 29600.35

Prepared by:

EA Laboratories 19 Loveton Circle Sparks, MD 21152 (410) 771-4920

Report 981037

July 1998

## TABLE OF CONTENTS

## NAS Brunswick EA Laboratories Report 981037

| 1 | N | AT | R. | ΓA | ΊV | Æ. |
|---|---|----|----|----|----|----|
|   |   |    |    |    |    |    |

- -2. CHAIN-OF-CUSTODY
- 3. ORGANIC DATA
  - A. Volatiles-602
  - B. TPH-GRO-Maine
  - C. TPH-DRO-Maine

1. NARRATIVE

# EA Laboratories ANALYTICAL NARRATIVE

Client: EA Eng., Sci., & Tech., Inc.

Laboratory Project Manager: David F. Brennan

Site: Fuel Farm

EA Laboratories Report: 981037

Project number: 29600.35

Date: 22 July 1998

This report contains the results of the analysis of three water samples collected on 18 June 1998 in support of the referenced project.

#### SAMPLE RECEIPT

The samples and one trip blank arrived by Federal Express at EA Laboratories on 20 June 1998. Upon receipt, the samples and blank were inspected and compared with the chain-of-custody record. The samples and blank were then logged into the laboratory computer system with assigned laboratory accession numbers and released for analysis. Operating under a variance from NFESC laboratory QA guidance, EA Laboratories stores aqueous samples for the determination of metals at  $4C \pm 2C$  until disposal.

| Client Sample Designation | EA Lab Number |
|---------------------------|---------------|
| NASBFF04MW008             | 9807487       |
| NASBFF04MWXD1             | 9807488       |
| TRIP 2                    | 9807489       |
| NASBFF04MW009             | 9807490       |

Following this narrative section are a glossary of data qualifiers used in this report (Table 1) and the original chain-of-custody record. Analytical results and quality control information are summarized in the appended data package which has been formatted to be consistent with the deliverable requirements of this project.

## **QUALITY CONTROL**

The following sections are ordered as the data appears in this report. They contain observations made during sample analysis, summarize the results of quality control measurements, and address the impact on data usability based upon project Data Quality Objectives. For each fractional analysis the narrative includes:

Sample chronology: This section summarizes the sample history by fraction including the sample preparation method and date, analytical method, and analysis date. Anything unusual about the samples, digestates, or extracts is identified. Holding time compliance is evaluated in this section.

Laboratory method performance: All quality control criteria for method performance must be met for all target analytes for data to be reported. These criteria generally apply to instrument tune,

## EA Laboratories ANALYTICAL NARRATIVE

Client: EA Eng., Sci., & Tech., Inc.

Site: Fuel Farm

Project number: 29600.35

Laboratory Project Manager: David F. Brennan

EA Laboratories Report: 981037

Date: 22 July 1998

calibration, method blanks, and Laboratory Control Samples (LCS). In some instances where method criteria fail, useable data can be obtained and are reported with client approval. The narrative will then include a thorough discussion of the impact on data quality.

Sample performance: Quality control field samples are analyzed to determine any measurement bias due to the sample matrix based on evaluation of matrix spikes (MS), matrix spike duplicates (MSD), and laboratory duplicates (D). If acceptance criteria are not met, matrix interferences are confirmed either by reanalysis or by inspection of the LCS results to verify that laboratory method performance is in control. Data are reported with appropriate qualifiers or discussion.

### AROMATIC VOLATILES by GC - WATER (EA9807487 -EA9807490)

Sample Chronology: Four aqueous samples and associated quality control were analyzed on 01 July and 02 July 1998 for benzene, toluene, ethylbenzene, and xylenes (BTEX) plus methyl tertiary butyl ether (MTBE) by USEPA 40CFR, Part 136, Appendix A, Method 602. All holding times were met.

• Sample NASBFF04MW009 was reanalyzed at a fifty times (50X) dilution in order to bring the concentrations of target analytes within calibration range.

Laboratory Method Performance: All laboratory method performance criteria were met for the reported samples.

Sample Performance: All quality control criteria were met for the reported samples.

#### PURGABLE TPH by GCFID - WATER (EA9807487, EA9807488, EA9807490)

Sample Chronology: Three aqueous samples and associated quality control were analyzed on 01-02 July 1998 by Maine Method 4.2.17 for gasoline range organics (GRO). All holding times were met.

Laboratory Method Performance: All laboratory method performance criteria were met for the reported samples.

Sample Performance: All quality control criteria were met for the reported samples.

EXTRACTABLE TPH by GC - WATER (EA9807487, EA9807488, EA9807490)

### EA Laboratories ANALYTICAL NARRATIVE

Client: EA Eng., Sci., & Tech., Inc.

Site: Fuel Farm

Project number: 29600.35

Laboratory Project Manager: David F. Brennan

EA Laboratories Report: 981037

Date: 22 July 1998

Sample Chronology: Three aqueous samples and associated quality control were extracted on 23 June 1998 and analyzed on 10-11 July 1998 according to Maine Method 4.1.25 for diesel range organics (DRO). All holding times were met.

A batch matrix spike/matrix spike duplicate (MS/MSD) was performed on another Brunswick sample, NASBFF04MW001.

Laboratory Method Performance: All laboratory method performance criteria were met for the reported samples.

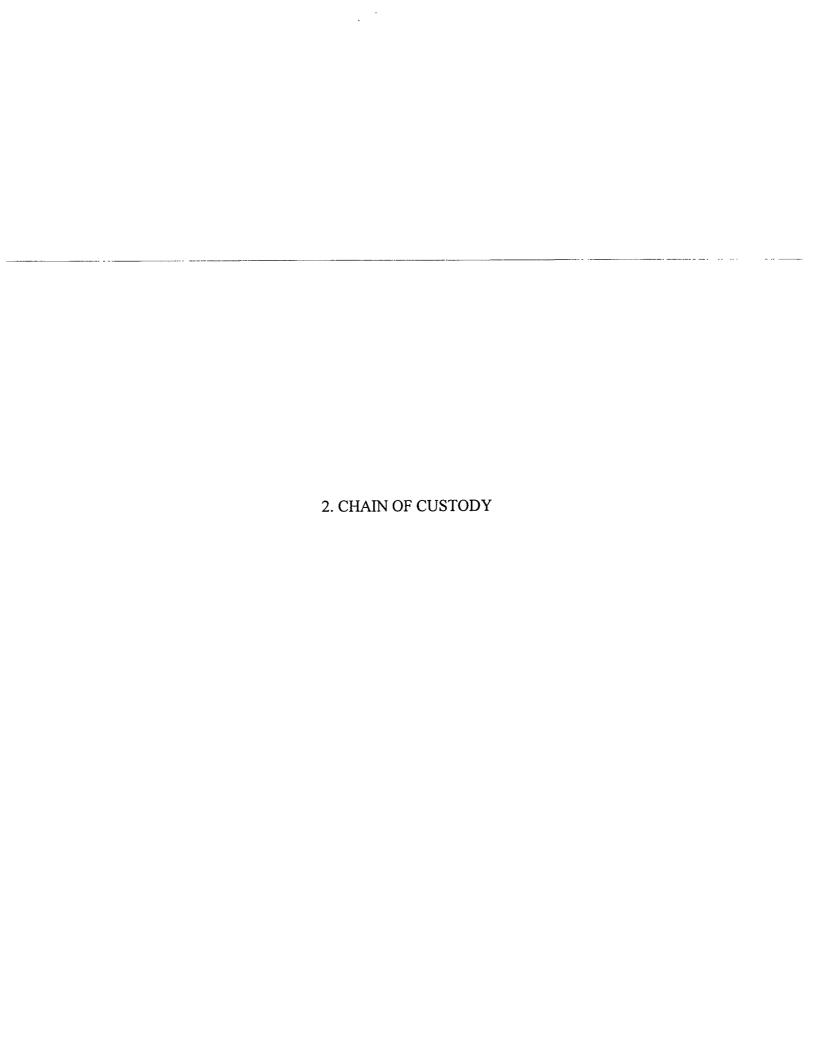
Sample Performance: All quality control criteria were met for the reported samples.

#### CERTIFICATION OF RESULTS

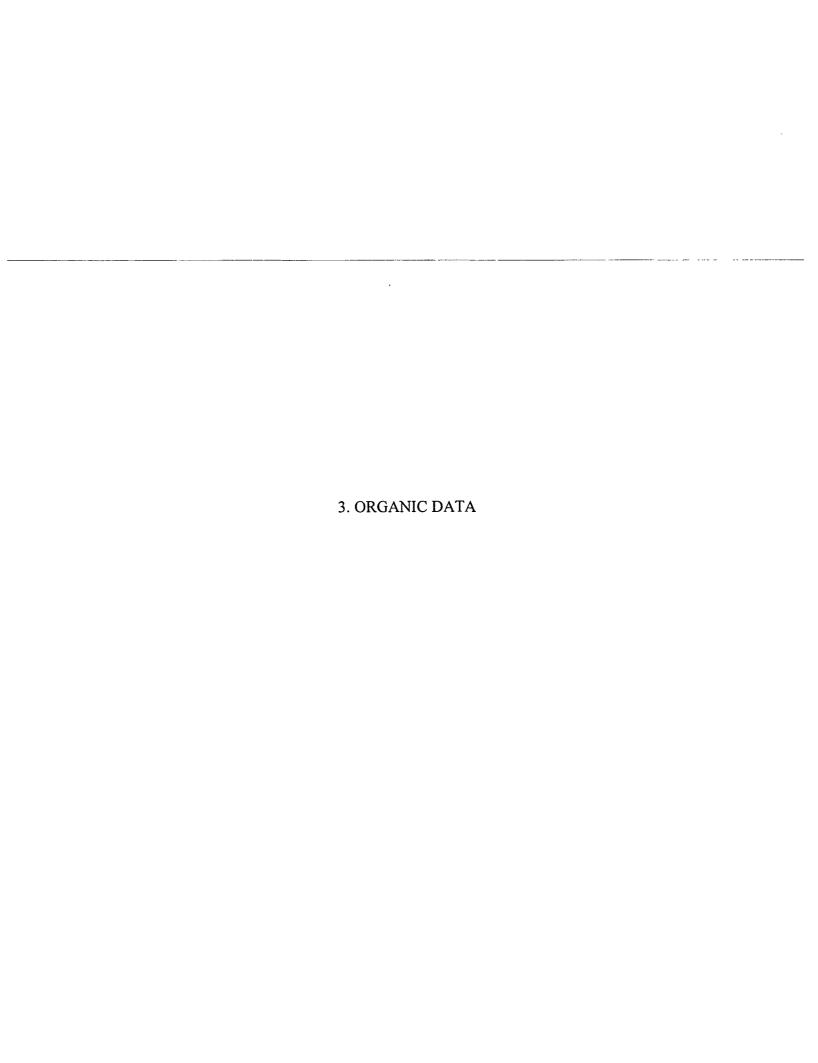
The Laboratory certifies that this report meets the project requirements for analytical data as stated in the Analytical Task Order (ATO) and the chain-of-custody. In addition, the Laboratory certifies that the data as reported meet the Data Quality Objectives for precision, accuracy, and completeness specified for this project or as stated in EA Laboratories Quality Assurance program for other than the conditions detailed above. It is recommended by the Laboratory that this analytical report should only be reproduced in its entirety. EA Laboratories is not responsible for any assumptions of data quality if partial packages are used to interpret data. Release of the data contained in this report has been authorized by the appropriate Laboratory Manager as verified by the following signature.

David F. Brennan, Laboratory Project Manager

22 July 1998


### TABLE 1. LABORATORY ORGANIC ANALYSIS DATA QUALIFIERS (1)

Qualifiers other than those listed below may be required to properly define the results. If used, they are given an alphabetic designation not already specified in this table or in a project/program document. such as a Quality Assurance Project Plan or a contract Statement of Work. Each additional qualifier is fully described in the Analytical Narrative section of the laboratory report.


- U—Indicates a target-compound-was analyzed-for but not detected. The sample-Reporting-Limit (RL) is corrected for dilution and, if a soil sample, for percent moisture, if reported on a dry weight basis.
- J Indicates an estimated value. This qualifier is used under the following circumstances:
  - 1) when estimating a concentration for tentatively identified compounds (TICs) in GC/MS analyses, where a 1:1 response is assumed,
  - 2) when the mass spectral and retention time data indicate the presence of a compound that meets the volatile and semivolatile GC/MS identification criteria, and the result is less than the RL but greater than the method detection limit (MDL).
- B This qualifier is used when the analyte is found in the associated method blank as well as in the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action. For GC/MS analyses, this qualifier is used for a TIC, as well as, for a positively identified target compound.
- E This qualifier identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- **D** When applied, this qualifier identifies all compound concentrations reported from a secondary dilution analysis.
- A This qualifier indicates that a TIC is a suspected aldol-condensation product.
- N Indicates presumptive evidence of a compound. This qualifier is only used for GC/MS TICs, where the identification is based on a mass spectral library search. For generic characterization of a TIC, such as chlorinated hydrocarbon, the N qualifier is not used.
- P When applied, this qualifier indicates a reported value from a GC analysis when there is greater than 25% difference for detected concentrations between the two GC columns.

<sup>(1)</sup> These Data Qualifiers are added by the laboratory to provide additional information for the reported results.

They should not be confused with the qualifiers applied to the reported data as a result of a data validation process performed independently of the laboratory reporting procedure.



| Compan                        |           |          |           |           | Project           | t Manage                                         | r or C        | contact:<br>12754<br>8100                        |            | Pa                                               | aram      | etc         | ett      | od 1     | <b>Yum</b>    | bers   | for a      | Anah         | ysis |          |       | Chai                           | n of C                                                              | ustody A       | orc                          | i             |
|-------------------------------|-----------|----------|-----------|-----------|-------------------|--------------------------------------------------|---------------|--------------------------------------------------|------------|--------------------------------------------------|-----------|-------------|----------|----------|---------------|--------|------------|--------------|------|----------|-------|--------------------------------|---------------------------------------------------------------------|----------------|------------------------------|---------------|
| EAL                           | Engin     | eev      | 14        |           | Phone             | :914 5                                           | 65°           | 8100                                             |            |                                                  |           | ,           |          |          |               |        |            |              |      |          |       |                                | <b>8</b>                                                            | EA Laboratorie | S<br>clo                     |               |
| EA E                          | 10. 296   | OW.      | 35        |           | Projec            | t Nam:                                           |               |                                                  |            | 85                                               | 1         | 25          | - [      |          | l             |        |            |              |      |          |       | 1                              | Sparks, MD 21152<br>Telephone: (410) 771-492<br>Fax: (410) 771-4407 |                |                              |               |
| Dept.: 2                      | 192       | Task     | :7        | 150       |                   | el F                                             | 4nu           | n                                                |            | ZZ<br>ZZ                                         | , <u></u> | 1.0         |          |          |               |        |            |              |      |          |       | Dan and Dallan                 |                                                                     | Fax: (410) 771 | 4407                         |               |
| Sample                        | Storage L | .ocati   |           | 114       | ATO N             | lumber:                                          |               |                                                  |            | 87                                               | 6.0       | 7           | ]        | - }      | J             |        |            |              |      |          |       | Report Delive                  | radies:<br>3                                                        | 4 D (          | $\widehat{\mathbf{z}}$       |               |
| 54                            | Ħ         | <b>D</b> | <u>/\</u> | 30 41     |                   |                                                  |               |                                                  | 2          |                                                  | 1         | ĭ           |          |          | i             |        |            |              |      |          |       | ① 2<br>EDD: Yes <b>(</b> No    |                                                                     | 4 0 (          | E                            |               |
| Page                          | of /      | Re       | port      | #:        | G18               | 103                                              | (See          | 18137                                            | Containers | 603                                              | 660       | bed         |          |          |               |        |            |              |      |          |       | DUE TO CLIE                    |                                                                     | 13/98          |                              |               |
| l                             |           |          |           |           |                   |                                                  |               |                                                  | ਲੋ         | ļ                                                | ا ۱       | 7           |          | Ì        |               |        |            |              |      |          |       |                                |                                                                     |                |                              |               |
| Date                          | Time      | Water    | Soil      |           | Sampl<br>19       | le Identifi<br>Characte                          | cation<br>ors | 1                                                | No. of     | Soc                                              | TPH       | TPH DEG     |          |          |               |        |            |              |      |          |       | EA Labs<br>Accession<br>Number |                                                                     | Remark         | (S                           |               |
| dishs                         | 0945      | メ        |           | NASE      | 3FFC              | 4 mwa                                            | 2,8           | 1 1 1 1                                          | 8          | X                                                | X         | 7           |          |          | a             | 8      | <u>n</u> - | 72           | 8    | 7        |       | 9807464                        | I DM:                                                               |                |                              |               |
| 6 18 48<br>6 18 48<br>6 18 48 | _         | Ý        |           | MASE      | PFO               | 4MWX                                             | 57            | <del>                                     </del> | 8          | <del></del>                                      |           | ×           |          |          | $\overline{}$ | 0      | 5          | 71           |      | 8        | _     | 9807465                        | LFIVI.                                                              | David B        |                              | ian           |
| 6/18/08                       | ∆926      | X        | _         | TRIF      | 22                |                                                  | 1-1           | <del></del>                                      | 3          | X                                                | /-        | _           |          | $\dashv$ | 싱             | 8(     | Κ.         | 5            | 2    | 0        |       | 9607466                        | -                                                                   | AL- 85-2       | 65                           |               |
| 11/5/98                       | 1133      | V        | _         | TRIP      | 2550              | Linuo                                            | 09            | <del>                                     </del> | 8          | <del> </del>                                     | X         | X           |          |          |               | 8 (    |            | <del> </del> |      | iC       |       | 9407467                        | ļ                                                                   |                |                              |               |
| 4123 18                       | 11 DU     |          |           |           | <u> </u>          |                                                  | <u>الما</u>   | <del>                                     </del> |            |                                                  |           | <b>/</b> \_ |          | $\dashv$ | $\dashv$      | 2      | <u> </u>   | 1            | 1    | <u> </u> |       | 430-1107                       | <b>—</b>                                                            | aine Mr        | thor                         |               |
|                               |           |          |           | 1 1 1     | 1 1 1 1           | <u> </u>                                         |               | <del>-                                    </del> | _          | ļ                                                |           |             | -        | -        | $\dashv$      |        |            | -            |      |          |       | ,                              |                                                                     |                | -                            |               |
|                               |           |          | _         |           | <del>-1-1-1</del> | <u>    </u>                                      |               |                                                  | ┢          | ┢                                                |           |             |          | -        | $\neg$        |        | -          |              |      |          |       | :                              |                                                                     | ulmed          | 6R                           |               |
|                               |           |          |           |           |                   | <u> </u>                                         | 11            | _ <u></u>                                        |            | t -                                              |           |             |          | $\dashv$ |               |        |            |              |      |          | -     |                                | "DR                                                                 | .O and         | 614                          | ر             |
|                               |           |          |           |           |                   | <del>                                     </del> | 11            | <del>                                     </del> |            | <del>                                     </del> |           |             |          | 7        |               |        |            | <b></b> -    |      |          |       | ·                              | <del></del>                                                         |                |                              |               |
|                               | -         |          |           | 111       |                   |                                                  | 1 1           | 1 1 1 1                                          |            |                                                  |           |             |          | ╗        |               | -      |            |              |      |          |       |                                |                                                                     |                |                              |               |
|                               |           |          |           | 111"      | K                 | SRO                                              | john          | J. OR                                            | 0          | Ł                                                | 24        | M           | ain      | ,        | D             | ΞPL    | Of         | 1            | 72   | fho      | ds    | *                              |                                                                     |                |                              |               |
|                               |           |          |           | 1 1 1     | 1 1 1 1           | 1 1 1 1 1                                        | 1 1           |                                                  |            |                                                  |           |             |          |          |               |        |            |              |      |          |       | :                              |                                                                     |                |                              |               |
|                               |           |          |           |           |                   |                                                  |               | <u> </u>                                         |            |                                                  |           |             |          |          |               |        |            |              |      |          |       |                                |                                                                     | 14 15          | 51                           |               |
|                               |           |          |           |           |                   |                                                  |               | 11111                                            |            |                                                  |           |             | ĺ        | - [      |               |        |            |              |      |          |       |                                |                                                                     |                |                              |               |
|                               |           |          |           | 1 1 1     | 1111              | 1 1 1 1                                          | 1 1           | 1 1 1 1 1                                        |            |                                                  |           |             |          |          |               |        |            |              |      |          |       |                                |                                                                     |                |                              |               |
|                               |           |          |           | 1 1 1     | 1                 |                                                  | 1 1           | <del></del>                                      |            | <del>                                     </del> |           |             | T†       | 寸        |               |        |            |              |      |          |       |                                | -                                                                   |                |                              |               |
|                               |           |          |           |           | <del></del>       | <del></del>                                      |               | <del></del>                                      |            | ┢                                                |           |             |          |          |               |        | _          |              |      |          |       |                                |                                                                     | <del></del>    |                              |               |
|                               |           |          |           |           | <u>.lL</u>        |                                                  |               |                                                  | ┢          | ╁                                                |           |             |          | -        |               |        | -          | -            |      | -        | Н     |                                |                                                                     |                |                              |               |
|                               |           |          |           |           |                   |                                                  |               |                                                  | <b> </b> - | ╂                                                |           |             | $\vdash$ | -        |               |        | _          | _            |      |          |       |                                |                                                                     |                | _ ~                          | 1             |
|                               |           |          |           |           |                   |                                                  |               |                                                  |            |                                                  |           |             |          |          |               |        |            |              |      |          |       |                                | $\bigcirc$                                                          | C ODD:         | <u>3</u>                     | 467           |
|                               |           |          |           |           |                   |                                                  |               |                                                  |            |                                                  |           |             |          |          |               |        |            |              |      |          |       |                                |                                                                     | C O'O'P        | 3)                           | <del>60</del> |
| Samples                       | by: (Sig  | natur    | 8)        |           | LOLIA             | Date/TI                                          | me            | Relinquishe                                      | d by:      | : (Sig                                           | natu      | re)         |          |          |               |        | Date/      | Time         | R    | ecei     | ved l | by: (Signature)                |                                                                     |                | D                            | ate/Time      |
| Relinqui                      | shed by:  | (Sign    | ature     |           | ~11.5             | Date/Ti                                          |               | Received                                         | y Lab      | erat                                             | ory: (    | Sign        | ature)   | )        |               | 1      | )ate/      | Time         | A    | irbill   | Num   | nber:                          |                                                                     | Sample Ship    | ned by                       | r (Circle)    |
| Bry                           | -         |          |           | -         |                   |                                                  |               |                                                  | 20         | مسم                                              | <u> </u>  | 7           | L.       | م-رد     | <u>ب</u> خ    | ٠,     |            | 10.          | ے ا  |          |       | 912425                         | 7                                                                   |                | p <del>o</del> u by<br>Puro. | UPS           |
| Cooler T                      | emp       |          |           |           | J1                |                                                  | ment          |                                                  |            | )                                                |           |             |          |          |               | als li | ntac       | -            | Yes  |          | No    | i                              |                                                                     | Hand Carried   | t                            |               |
| NOTE: Pi                      | as indic  | ate m    | ethod     | number fo | or analys         | es reques                                        | ed. T         | his will help cl                                 | akity a    | ny qu                                            | uestio    | ns w        | th labo  | orato    | ry te         | chniq  | ues.       |              |      |          |       |                                |                                                                     | Oth r:         |                              |               |



A. Volatiles

EPA SAMPLE NO.

NASBFF04MW008

| Lab Name:                                        | EA LABO       | RATORIES    |           |             | Report#:                                         | 9810          | 37               | IVASBITOTI                                       | WI W 000 |
|--------------------------------------------------|---------------|-------------|-----------|-------------|--------------------------------------------------|---------------|------------------|--------------------------------------------------|----------|
| Lab Code:                                        | EAENG         | _           | Client:   | FUEL FAI    | R Method:                                        | 602           |                  | SDG No.:                                         |          |
| Matrix: (soil                                    | /water)       | WATER       | •         |             |                                                  | I             | Lab Sample ID:   | #9807487                                         |          |
| Sample wt/vo                                     | 1:            | 5.0         | (g/mL)    | ML          |                                                  |               | Lab File ID      | : <u>VB2A4204.I</u>                              | )        |
| Level: (lov                                      | v/med)        |             |           |             |                                                  |               | Date Sampled:    | 6/18/98                                          |          |
| % Moisture:                                      | not dec.      |             |           |             |                                                  | ]             | Date Analyzed:   | 7/1/98                                           |          |
| GC Column:                                       | DB-VRX        |             | ID:       | 0.45(       | mm)                                              | I             | Dilution Factor: | 1:0                                              |          |
| Soil Extract V                                   | olume:        |             | (uL)      |             |                                                  | Soil A        | liquot Volume:   |                                                  | (uL)     |
|                                                  |               |             |           |             | Concentrat                                       |               | s:               |                                                  |          |
| CAS                                              | No.           | Compound    |           |             | (ug/L or ug/I                                    | (g)           | ug/L             | Q                                                |          |
| 1634                                             | -04-4         | Methyl t-Bu | tyl Ether |             |                                                  |               | 1                | U                                                |          |
| 71-4                                             | 3-2           | Benzene     |           | <del></del> | 1                                                |               | 1                | U                                                |          |
| 108-                                             | 88-3          | Toluene     |           |             |                                                  |               | 1                | U                                                |          |
| 100-                                             | 41-4          | Ethylbenzen | e .       |             |                                                  |               | 1                | U                                                |          |
| <u> </u>                                         |               | m&p-Xylen   |           |             |                                                  |               | 1                | U                                                |          |
| 95-4                                             | 7-6           | o-Xylene    |           |             |                                                  |               | 1                | Ū                                                |          |
| 13.                                              |               | o zijiene   |           |             | <del></del>                                      | <del></del>   | <del></del>      | <del>                                     </del> |          |
| ļ                                                |               |             |           |             | <del>                                     </del> |               |                  | <del>  </del>                                    |          |
|                                                  |               |             |           | <del></del> | <del></del>                                      |               |                  | <del></del>                                      |          |
| ļ                                                |               |             |           |             | <del>                                     </del> | ·····         |                  | <b>  </b>                                        |          |
|                                                  |               |             |           |             |                                                  |               |                  |                                                  |          |
|                                                  |               |             |           |             |                                                  |               |                  |                                                  |          |
|                                                  |               |             |           |             |                                                  |               |                  |                                                  |          |
|                                                  |               |             |           |             | <u> </u>                                         |               |                  |                                                  |          |
|                                                  | <del></del> - |             |           | -           |                                                  |               |                  | 1                                                |          |
|                                                  |               |             |           |             |                                                  |               |                  |                                                  |          |
| <del>                                     </del> |               |             |           | -           | 1                                                |               |                  | <del>                                     </del> |          |
|                                                  |               |             |           |             |                                                  |               |                  |                                                  |          |
|                                                  |               |             |           |             | <del> </del>                                     |               |                  | <del> </del>                                     |          |
| <u> </u>                                         |               |             |           |             | <del></del>                                      |               | _ <del></del>    | <del></del>                                      |          |
| <u> </u>                                         |               |             |           |             | <del> </del>                                     |               |                  |                                                  |          |
|                                                  |               |             |           | <del></del> | <u> </u>                                         | <del></del>   |                  |                                                  |          |
|                                                  |               | <del></del> |           |             | ļ                                                |               |                  | ļ                                                |          |
|                                                  |               |             |           |             |                                                  |               |                  |                                                  |          |
|                                                  |               |             |           |             | <b></b>                                          |               |                  |                                                  |          |
|                                                  |               |             |           |             |                                                  |               |                  |                                                  |          |
|                                                  |               |             |           |             | 1                                                |               |                  |                                                  |          |
|                                                  |               |             |           |             |                                                  |               |                  |                                                  |          |
| <u> </u>                                         |               |             |           |             |                                                  |               |                  |                                                  |          |
|                                                  |               |             |           |             |                                                  |               |                  |                                                  |          |
|                                                  |               |             |           |             | <del>                                     </del> | <del></del> - |                  |                                                  |          |
| <del>                                     </del> |               |             |           | <del></del> | <del> </del>                                     |               | <del></del>      |                                                  |          |
| <del> </del>                                     | <del></del>   |             |           |             | <del>  -</del>                                   |               |                  | <del> </del>                                     |          |
| <del> </del>                                     | <del></del>   |             |           |             | <del>                                     </del> |               |                  | <b></b>                                          |          |
| 1                                                |               |             |           |             | 1                                                |               |                  |                                                  |          |

EPA SAMPLE NO.

NASBFF04MWXD1

| Lab Name:  | EA LABOI    | RATORIES             | Report#:     | 981037                                |                                                  |      |
|------------|-------------|----------------------|--------------|---------------------------------------|--------------------------------------------------|------|
| Code:      | EAENG       | Client: FUE          | LFAR Method: | 602                                   | SDG No.:                                         |      |
| Maurix: (s | oil/water)  | WATER                |              | Lab Sample ID:                        | #9807488                                         |      |
| Sample wt/ | /vol:       | 5.0(g/mL)N           | <u>ML</u>    | Lab File ID                           | : <u>VB2A4205.</u> [                             |      |
| Level: (   | low/med)    |                      |              | Date Sampled:                         | 6/18/98                                          |      |
| % Moistur  | e: not dec. |                      |              | Date Analyzed:                        | 7/1/98                                           |      |
| GC Colum   | n: DB-VRX   | ID:0.                | 45(mm)       | Dilution Factor:                      | 1:0                                              |      |
| oil Extrac | t Volume:   | (uL)                 |              | Soil Aliquot Volume:                  |                                                  | (uL) |
|            |             |                      | Concentr     | ration Units:                         |                                                  |      |
| С          | AS No.      | Compound             | (ug/L or ug  | /Kg) ug/L                             | Q                                                |      |
| 16         | 634-04-4    | Methyl t-Butyl Ether |              | 1                                     | U                                                |      |
|            | 1-43-2      | Benzene              |              | 1                                     | U                                                |      |
|            | 08-88-3     | Toluene              | <del></del>  | 1                                     | U                                                |      |
|            | 00-41-4     | Ethylbenzene         |              | 1                                     | U                                                |      |
| 1          | 30-41-4     | m&p-Xylenes          |              | 1                                     | U                                                |      |
| 0.5        | 5-47-6      | o-Xylene             |              | 1                                     | U                                                |      |
| 93         | 5-47-6      | 0-Aylene             |              | 1                                     | <del></del>                                      |      |
| <u> </u> - |             |                      |              |                                       | <del></del>                                      |      |
| _          |             |                      |              |                                       | ļ                                                |      |
| <u> </u>   |             |                      |              | · · · · · · · · · · · · · · · · · · · |                                                  |      |
|            |             |                      | . <u></u>    |                                       |                                                  |      |
|            |             |                      |              |                                       |                                                  |      |
|            |             |                      |              |                                       |                                                  |      |
|            |             |                      |              |                                       |                                                  |      |
| -          |             |                      |              |                                       |                                                  |      |
| -          |             |                      |              |                                       |                                                  |      |
| -          |             |                      |              |                                       | ++                                               |      |
| -          |             |                      |              |                                       | <del> </del>                                     |      |
| <u> </u>   |             |                      |              |                                       |                                                  |      |
| -          |             |                      | <del></del>  |                                       |                                                  |      |
| <u> </u>   | _           |                      |              |                                       |                                                  |      |
| <u> </u>   |             |                      |              |                                       | <u> </u>                                         |      |
|            |             |                      |              |                                       | <b></b> _                                        |      |
|            |             |                      |              |                                       | ļ                                                |      |
|            |             |                      |              |                                       |                                                  |      |
|            |             |                      |              |                                       |                                                  |      |
|            |             |                      |              |                                       |                                                  |      |
|            |             |                      |              |                                       |                                                  |      |
|            |             |                      |              |                                       |                                                  |      |
| <u> </u>   | <del></del> |                      |              |                                       |                                                  |      |
| -          |             |                      |              |                                       |                                                  |      |
| <b>⊢</b>   |             |                      |              | · <del></del>                         | <del>                                     </del> |      |
| <b> </b>   | <del></del> |                      |              |                                       | <del> </del>                                     |      |
| <b> </b> _ |             |                      | <del></del>  |                                       | <b></b>                                          |      |

EPA SAMPLE NO.

|            |               |                      |                                              |                                       | TRIP 2                                           |      |
|------------|---------------|----------------------|----------------------------------------------|---------------------------------------|--------------------------------------------------|------|
| Lab Nam    | e: EA LABO    | RATORIES             | Report#:                                     | 981037                                | ļ                                                |      |
| Lab Code   | EAENG         | Client: FUEL         | FAR Method:                                  | 602                                   | SDG No.:                                         |      |
| Matrix: (  | (soil/water)  | WATER                |                                              | Lab Sample ID:                        | #9807489                                         |      |
| Sample w   | rt/vol:       | (g/mL)ML             | <u>.                                    </u> | Lab File ID                           | VB2A4203.D                                       | )    |
| Level:     | (low/med)     |                      |                                              | Date Sampled:                         | 6/18/98                                          |      |
| % Moistu   | ire: not dec. |                      |                                              | Date Analyzed:                        | 7/1/98                                           |      |
| GC Colui   | mn: DB-VRX    | ID:0.45              | <u>5</u> (mm)                                | Dilution Factor:                      | 1:0                                              |      |
| Soil Extra | act Volume:   | (uL)                 |                                              | Soil Aliquot Volume:                  |                                                  | (uL) |
|            |               |                      | Concentration                                | on Units:                             |                                                  |      |
|            | CAS No.       | Compound             | (ug/L or ug/Kg                               | g) <u>ug/L</u>                        | Q                                                |      |
| í          | 1634-04-4     | Methyl t-Butyl Ether |                                              | 1                                     | U                                                |      |
|            | 71-43-2       | Benzene              |                                              | 1                                     | U                                                |      |
|            | 108-88-3      | Toluene              |                                              | 1                                     | U                                                |      |
|            |               |                      |                                              | 1                                     | U                                                |      |
| ŀ          | 100-41-4      | Ethylbenzene         |                                              | 1                                     | U                                                |      |
|            | 0.5 1.5       | m&p-Xylenes          | <del></del>                                  |                                       |                                                  |      |
|            | 95-47-6       | o-Xylene             |                                              | 1                                     | U                                                |      |
|            |               |                      |                                              |                                       |                                                  |      |
|            |               |                      |                                              |                                       |                                                  |      |
| ĺ          |               |                      |                                              |                                       |                                                  |      |
| Ţ          |               |                      |                                              |                                       |                                                  |      |
|            |               |                      | ,                                            |                                       |                                                  |      |
|            |               |                      |                                              |                                       |                                                  |      |
|            |               |                      |                                              | · · · · · · · · · · · · · · · · · · · |                                                  |      |
| }          |               |                      |                                              |                                       |                                                  |      |
| <u> </u>   |               |                      |                                              |                                       |                                                  |      |
| ł          |               |                      |                                              |                                       |                                                  |      |
| }          |               |                      |                                              |                                       |                                                  |      |
|            |               |                      |                                              | <del></del>                           | <del>                                     </del> |      |
| }          |               |                      | <del></del>                                  |                                       | <del>                                     </del> |      |
| }          |               |                      |                                              |                                       |                                                  |      |
| -          |               |                      |                                              |                                       | <u> </u>                                         |      |
| ļ          |               |                      |                                              |                                       |                                                  |      |
|            |               |                      |                                              | <del> </del>                          |                                                  |      |
| 1          |               |                      |                                              | <del></del>                           |                                                  |      |
|            |               |                      |                                              |                                       |                                                  |      |
|            |               |                      |                                              |                                       |                                                  |      |
|            |               |                      |                                              |                                       |                                                  |      |
|            |               |                      |                                              |                                       |                                                  |      |
| İ          |               |                      |                                              |                                       |                                                  |      |
| ł          | <del></del>   |                      |                                              |                                       |                                                  |      |
| ł          |               |                      |                                              |                                       |                                                  |      |
| ŀ          |               |                      |                                              |                                       |                                                  |      |
| ŀ          |               |                      |                                              |                                       | <del>                                     </del> |      |
| ļ          |               |                      | <del></del>                                  |                                       | <del> </del>                                     |      |

EPA SAMPLE NO.

NASBFF04MW009

| Lab Nan   | ne:      | EA LABOI      | RATORIES    |             |              | Report#:                              | 98.        | 1037             |           |      |
|-----------|----------|---------------|-------------|-------------|--------------|---------------------------------------|------------|------------------|-----------|------|
| Cod       | le:      | EAENG         | _           | Client:     | FUEL FAR     | Method:                               | 602        |                  | SDG No.:  |      |
| Matrix:   | (soil/   | water)        | WATER       | -           |              |                                       |            | Lab Sample ID:   | #9807490  | -    |
| Sample v  | wt/vo]   | l:            | 5.0         | (g/mL)      | ML           |                                       |            | Lab File ID:     | VB2A4207. | D    |
| Level:    | (low     | //med)        |             | _           |              |                                       |            | Date Sampled:    | 6/18/98   | -    |
| % Moist   | ure:     | not dec.      |             | •           |              |                                       |            | Date Analyzed:   | 7/1/98    | _    |
| GC Colu   | īmn:     | DB-VRX        |             | ID:         | (n           | nm)                                   |            | Dilution Factor: | 1.0       | •    |
| Soil Extr | act V    | olume:        |             | (uL)        |              |                                       | Soil       | Aliquot Volume:  |           | (uL) |
|           |          |               |             |             |              | Concentrat                            |            |                  |           |      |
|           | CAS      |               | Compound    |             |              | ıg/L or ug/I                          | Kg)<br>——— | ug/L<br>         | Q         | _    |
|           | 1634     | -04-4         | Methyl t-Bu | tyl Ether   |              |                                       |            | 1                | U         | ,    |
|           | 71-43    | 3-2           | Benzene     |             |              |                                       |            | 1                | U         |      |
|           | 108-     | 88-3          | Toluene     |             |              |                                       |            | 710              | Е         |      |
|           | 100-4    | 41-4          | Ethylbenzer | ie          |              |                                       |            | 58               |           |      |
|           |          |               | m&p-Xylen   | es          |              |                                       |            | 160              |           |      |
|           | 95-4     | 7-6           | o-Xylene    |             |              |                                       |            | 30               |           |      |
|           |          |               |             |             |              |                                       |            |                  |           | 1    |
|           | <u> </u> |               |             |             |              |                                       |            |                  |           |      |
|           |          | ··            |             |             |              |                                       |            |                  |           |      |
|           |          |               |             |             |              |                                       |            |                  |           |      |
|           |          |               |             |             |              |                                       |            |                  |           |      |
|           |          |               |             |             |              | <del> </del>                          |            |                  | <u> </u>  |      |
|           |          |               |             |             |              |                                       |            |                  |           |      |
|           |          | ·             |             |             |              |                                       |            |                  |           |      |
|           |          | <u></u>       |             |             |              | -                                     |            |                  |           |      |
|           |          |               |             |             |              |                                       |            |                  |           |      |
|           |          |               |             |             |              |                                       |            |                  |           |      |
|           |          |               |             |             |              |                                       |            |                  |           |      |
| ]         |          | <del></del>   |             |             |              |                                       |            |                  |           |      |
|           |          |               | <del></del> | <del></del> | ··           |                                       |            |                  |           |      |
| ŀ         |          |               |             |             |              | · · · · · · · · · · · · · · · · · · · |            |                  | -         |      |
| ŀ         |          |               |             |             |              |                                       |            |                  |           |      |
| ļ         |          |               |             |             |              |                                       |            |                  |           |      |
| ľ         |          |               | <del></del> |             |              | <del></del>                           |            |                  |           |      |
| ţ         |          |               |             |             |              |                                       |            |                  |           |      |
| <u> </u>  |          |               | <del></del> |             |              |                                       |            |                  |           |      |
| ŀ         |          |               |             |             | <del> </del> |                                       |            |                  |           |      |
| -         |          | <del></del> - |             |             |              |                                       |            |                  |           |      |

EPA SAMPLE NO.

NASBFF04MW009 DL

| Lab Name:    | EA LABO       | RATORIES    |          |                                       | Report#:                                         | 98103      | 7               |             |      |
|--------------|---------------|-------------|----------|---------------------------------------|--------------------------------------------------|------------|-----------------|-------------|------|
| Lab Code:    | EAENG         | _           | Client:  | FUEL FAR                              | Method:                                          | 602        |                 | SDG No.:    |      |
| Matrix: (so  | oil/water)    | WATER       | _        |                                       |                                                  | La         | ab Sample ID:   | #9807490 D  | L    |
| Sample wt/   | vol:          | 5.0         | (g/mL)   | ML                                    |                                                  |            | Lab File ID:    | VB2A4245.J  | D .  |
| Level: (1    | ow/med)       |             |          |                                       |                                                  | D          | ate Sampled:    | 6/18/98     |      |
| % Moisture   | e: not dec.   |             |          |                                       |                                                  | D          | ate Analyzed:   | 7/2/98      |      |
| GC Column    | n: DB-VRX     | · · ·       | ID:      | (1                                    | mm)                                              | D          | ilution Factor: | 50:0        |      |
| Soil Extract | Volume:       |             | (uL)     |                                       |                                                  | Soil Al    | iquot Volume:   |             | (uL) |
|              |               |             |          |                                       | Concentrat                                       | ion Units: |                 |             |      |
| C            | AS No.        | Compound    |          | (                                     | ug/L or ug/I                                     | ζg)        | ug/L            | Q           |      |
| 16           | 534-04-4      | Methyl t-Bu | tvl Ethe | r                                     | T                                                | 5          | 0               | U           |      |
| _            | -43-2         | Benzene     |          | <del></del>                           | <del> </del>                                     | 5          |                 | U           |      |
|              | 8-88-3        | Toluene     |          |                                       |                                                  | 2500       |                 | D           |      |
| <b>—</b>     | 0-41-4        | Ethylbenzen |          |                                       | <del>                                     </del> | 7          |                 | D           |      |
| <u> </u>     | 70 41 4       | m&p-Xylen   |          | <del></del>                           | <del> </del>                                     | 210        |                 | D           |      |
| 05           | i-47-6        | o-Xylene    |          |                                       | <del> </del>                                     | 7          |                 | D           |      |
|              |               | 0 11/10110  |          | <del></del>                           | <del> </del>                                     |            |                 |             |      |
| F            |               |             |          |                                       | <u> </u>                                         |            |                 |             |      |
| -            |               |             |          | <del></del>                           |                                                  |            |                 |             |      |
| -            |               |             |          |                                       | <del> </del>                                     |            | <del>-</del>    |             |      |
|              |               |             |          |                                       | <del> </del> -                                   |            |                 | <del></del> |      |
| -            |               |             |          |                                       |                                                  |            |                 |             |      |
|              |               |             |          |                                       |                                                  |            |                 |             |      |
|              |               |             |          |                                       |                                                  |            |                 |             |      |
| -            |               |             |          |                                       |                                                  |            |                 |             |      |
| ⊢            |               |             |          | ·                                     |                                                  |            |                 |             |      |
| -            |               |             |          |                                       | <del>                                     </del> |            |                 |             |      |
| }_           |               |             |          |                                       |                                                  |            |                 |             |      |
| <u> </u>     |               |             |          | . <del> </del>                        |                                                  |            |                 |             |      |
|              |               |             |          |                                       |                                                  |            |                 |             |      |
| -            |               |             |          |                                       |                                                  |            |                 |             |      |
| -            | <del></del> - |             |          | · · · · · · · · · · · · · · · · · · · | <del> </del>                                     |            |                 |             |      |
| <u> </u>     | <del></del>   |             |          |                                       | <del> </del>                                     |            |                 |             |      |
| -            | <del></del>   |             |          |                                       | <del></del> -                                    |            |                 |             |      |
| <u> </u>     |               |             |          |                                       |                                                  |            |                 |             |      |
|              |               |             |          |                                       | <del>                                     </del> |            |                 |             |      |
|              | <del></del>   |             |          |                                       |                                                  |            |                 |             |      |
| <u> </u>     |               |             |          |                                       |                                                  |            | <del></del>     |             |      |
| L            |               |             |          | <del></del>                           |                                                  |            |                 |             |      |
| <u></u>      |               |             |          |                                       |                                                  |            |                 |             |      |
|              |               |             |          |                                       |                                                  | · <u>-</u> |                 |             |      |
|              |               |             |          |                                       |                                                  |            |                 |             |      |
|              |               |             |          |                                       |                                                  |            |                 |             |      |

B. TPH-GRO

EPA SAMPLE NO.

NASBFF04MW008

| Lab Name: EA LABOR   | RATORIES           | Report#:      | 981037               |            |      |
|----------------------|--------------------|---------------|----------------------|------------|------|
| Lab Code: EA ENG     | Client: FUEL FAI   | R Method:     | 4.2.17               | SDG No.:   |      |
| Matrix: (soil/water) | WATER              |               | Lab Sample ID:       | #9807487   |      |
| Sample wt/vol:       | (g/mL)ML           |               | Lab File ID          | VD4J3012.D |      |
| Level: (low/med)     |                    |               | Date Sampled:        | _6/18/98   |      |
| % Moisture: not dec. | -                  |               | Date Analyzed:       | 7/2/98     |      |
| GC Column: DB-624    | ID: 0.53           | (mm)          | Dilution Factor:     | 1.0        |      |
| Soil Extract Volume: | (uL)               |               | Soil Aliquot Volume: |            | (uL) |
|                      |                    | Concentrat    |                      |            |      |
| CAS No.              |                    | (ug/L or ug/K |                      | Q          |      |
|                      | TPH-Gasoline Range |               | 10                   | U          |      |
|                      |                    |               |                      |            |      |
|                      |                    |               | *                    |            |      |
|                      |                    |               |                      |            |      |
|                      |                    | ·             |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               | -                    |            |      |
|                      |                    |               |                      |            |      |
| <del></del>          |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      | <u> </u>   |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |

EPA SAMPLE NO.

NASBFF04MWXD1 Lab Name: EA LABORATORIES Report#: 981037 Code: EA ENG Client: FUEL FAR Method: 4.2.17 SDG No.: Matrix: (soil/water) WATER Lab Sample ID: #9807488 Sample wt/vol: 5.0 (g/mL) ML Lab File ID: VD4J3013.D Level: (low/med) Date Sampled: 6/18/98 % Moisture: not dec. Date Analyzed: 7/2/98 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: Soil Aliquot Volume: (uL) (uL) Concentration Units: CAS No. Compound (ug/L or ug/Kg) ug/L Q TPH-Gasoline Range 10 U

EPA SAMPLE NO.

NASBFF04MW009 Lab Name: EA LABORATORIES Report#: 981037 Lab Code: EA ENG Client: FUEL FAR Method: 4.2.17 SDG No.: WATER Lab Sample ID: #9807490 Matrix: (soil/water) Sample wt/vol: 5.0 (g/mL) ML Lab File ID: VD4J3014.D Date Sampled: 6/18/98 Level: (low/med) % Moisture: not dec. Date Analyzed: 7/2/98 GC Column: DB-624 Dilution Factor: 1.0 ID: 0.53 (mm) Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Concentration Units: CAS No. Compound (ug/L or ug/Kg) Q ug/L TPH-Gasoline Range 4400

C. TPH-DRO

NASBFF04MW008

EPA SAMPLE NO.

| Lab Name: I      | EA LABS           |                     | _ Contract: FUEL FAR |                         |
|------------------|-------------------|---------------------|----------------------|-------------------------|
| Lab Code:        | EAENG             | Case No.: 981037    | SAS No.:             | SDG No.: <u>9807487</u> |
| Matrix: (soil/wa | ater) WAT         | ER                  | Lab Sample ID        | 9807487                 |
| Sample wt/vol:   | 1000              | (g/ml) ML           | Lab File ID:         | SV2A151R.D              |
| Level: (low/me   | ed) <u>LOW</u>    |                     | Date Received        | : 06/20/98              |
| % Moisture:      |                   | decanted:(Y/N)      | N Date Extracted     | : 06/23/98              |
| Concentrated     | Extract Volum     | e: <u>1000 (uL)</u> | Date Analyzed        | : 07/11/98              |
| Injection Volun  | ne: <u>1.0</u> (ι | ıL)                 | Dilution Factor      | 1.0                     |
| GPC Cleanup:     | (Y/N) N           | pH:                 |                      |                         |
|                  |                   |                     | CONCENTRATION        | N UNITS:                |
| CAS NO.          | C                 | OMPOUND             | (ug/L or ug/Kg)      | JG/L Q                  |
|                  |                   | DRO AS C10-28 EVE   | N                    | 110                     |

EPA SAMPLE NO.

NASBFF04MWXD Lab Name: EA LABS Contract: FUEL FAR Lab Code: EAENG Case No.: 981037 SAS No.: SDG No.: 9807487 WATER Lab Sample ID: 9807488 Matrix: (soil/water) 1000 Sample wt/vol: (g/ml) ML Lab File ID: SV2A152R.D Level: (low/med) LOW Date Received: 06/20/98 % Moisture: decanted:(Y/N) Date Extracted: 06/23/98 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/11/98 Dilution Factor: 1.0 Injection Volume: 1.0 (uL) GPC Cleanup: (Y/N) N pH: **CONCENTRATION UNITS:** CAS NO. COMPOUND Q (ug/L or ug/Kg) UG/L DRO AS C10-28 EVEN 130

NASBFF04MW007

EPA SAMPLE NO.

| Lab Name:       | EA LABS           |            |          | Contract: | FUEL F      | AR L               |         |
|-----------------|-------------------|------------|----------|-----------|-------------|--------------------|---------|
| Lab Code:       | EAENG             | Case No.:  | 981037   | SAS No    | ).:         | SDG No.:           | 9807487 |
| Matrix: (soil/v | vater) WAT        | ER         |          | La        | b Sample    | ID: <u>980749</u>  | 0       |
| Sample wt/vo    | ol: <u>1000</u>   | ) (g/ml)   | ML       | La        | b File ID:  | SV2A15             | 53R.D   |
| Level: (low/n   | ned) LOV          | <u>/</u>   |          | Da        | ite Receiv  | ed: <u>06/20/9</u> | 8       |
| % Moisture:     |                   | decanted:( | Y/N)N    | N Da      | ite Extract | ed: 06/23/9        | 8       |
| Concentrated    | Extract Volun     | ne: 1000   | (uL)     | Da        | ite Analyz  | ed: 07/11/9        | 8       |
| Injection Volu  | ıme: <u>1.0</u> ( | (uL)       |          | Dil       | ution Fact  | tor: 1.0           |         |
| GPC Cleanup     | o: (Y/N)1         | NpH:       |          |           |             |                    |         |
|                 |                   |            |          | CONC      | ENTRATI     | ON UNITS:          |         |
| CAS NO          | ). C              | OMPOUND    |          | (ug/L o   | or ug/Kg)   | UG/L               | _ Q     |
|                 |                   | DRO AS C10 | -28 EVEN |           |             | 900                |         |

EPA SAMPLE NO.

NASBFF04WP002 Lab Name: EA LABORATORIES Report#: 981036 Lab Code: EA ENG SDG No.: Client: FUEL FAR Method: 4.2.17 Matrix: (soil/water) WATER Lab Sample ID: #9807467 Sample wt/vol: 5.0 (g/mL) ML Lab File ID: VD4J2983.D Level: (low/med) Date Sampled: 6/18/98 % Moisture: not dec. Date Analyzed: 6/30/98 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Concentration Units: CAS No. Compound (ug/L or ug/Kg) ug/L Q TPH-Gasoline Range 10

EPA SAMPLE NO.

NASBFF04WP003 Report#: 981036 Lab Name: EA LABORATORIES Client: FUEL FAR Method: Lab Code: EA ENG 4.2.17 SDG No.: WATER Lab Sample ID: #9807468 Matrix: (soil/water) Sample wt/vol: 5.0 (g/mL) ML Lab File ID: VD4J2984.D Level: (low/med) Date Sampled: 6/18/98 % Moisture: not dec. Date Analyzed: 6/30/98 ID: 0.53 (mm) Dilution Factor: 1.0 GC Column: DB-624 Soil Aliquot Volume: \_\_\_\_\_ (uL) Soil Extract Volume: (uL) Concentration Units: CAS No. Compound (ug/L or ug/Kg) ug/L Q TPH-Gasoline Range 3900  $\mathbf{E}$ 

| EPA | SAMPLE | NO. |
|-----|--------|-----|
|     |        |     |

NASBFF04WP004

| Lab Name: EA LA      | BORATORIES |           |             | кероп#:                  | 9810        | 130              |            |      |
|----------------------|------------|-----------|-------------|--------------------------|-------------|------------------|------------|------|
| Lab Code: EA EN      | G          | Client: F | FUEL FAR    | Method:                  | 4.2.17      |                  | SDG No.:   | 4    |
| Matrix: (soil/water) | WATER      |           |             |                          |             | Lab Sample ID:   | #9807469   |      |
| Sample wt/vol:       | 5.0        | (g/mL) _  | ML          |                          |             | Lab File ID:     | VD4J2985.D | )    |
| Level: (low/med)     |            |           |             |                          |             | Date Sampled:    | 6/18/98    |      |
| % Moisture: not de   | C          |           |             |                          |             | Date Analyzed:   | 7/1/98     |      |
| GC Column: DB-624    |            | ID: _     | 0:53(r      | nm)                      |             | Dilution Factor: | 1.0-       |      |
| Soil Extract Volume: |            | (uL)      |             |                          | Soil A      | Aliquot Volume:  |            | (uL) |
| CAS No.              | Compound   |           | (           | Concentra<br>ug/L or ug/ |             | ug/L             | Q          |      |
|                      | TPH-Gasoli | ne Range  |             |                          |             | 10               | U          |      |
|                      |            |           |             |                          |             |                  |            |      |
|                      |            |           |             |                          |             |                  |            |      |
|                      |            |           |             |                          |             |                  |            |      |
| <u> </u>             |            | ·         | <del></del> |                          |             |                  |            |      |
|                      |            |           |             |                          |             |                  |            |      |
|                      |            |           |             |                          |             | <del></del>      |            |      |
|                      |            |           |             |                          |             |                  |            |      |
|                      |            |           |             |                          |             |                  |            |      |
|                      |            |           | -           |                          |             |                  |            |      |
|                      |            |           |             |                          | · · · · · · |                  |            |      |
| -                    |            |           |             |                          |             |                  |            |      |
| -                    |            |           |             |                          |             |                  |            |      |
|                      |            |           |             |                          |             |                  |            |      |
| -                    |            |           |             |                          |             |                  |            |      |
|                      |            |           |             |                          |             |                  |            |      |
|                      |            |           | <del></del> |                          |             |                  |            |      |
|                      |            |           |             |                          |             |                  |            |      |
|                      |            |           |             |                          |             |                  |            |      |
|                      |            |           |             |                          |             |                  |            |      |
|                      |            | · · ·     |             | <del> </del>             |             |                  |            |      |

EPA SAMPLE NO.

NASBFF04WP005

| Lab Name: EA LABOR   | RATORIES           | Report#: 981036                          |                                                  |
|----------------------|--------------------|------------------------------------------|--------------------------------------------------|
| Lab Code: EA ENG     | Client: FUEL FAR   | Method: 4.2.17                           | SDG No.:                                         |
| Matrix: (soil/water) | WATER              | Lab Sample ID:                           | #9807470                                         |
| Sample wt/vol:       | 5.0(g/mL)ML        | Lab File ID                              | VD4J2986.D                                       |
| Level: (low/med)     |                    | Date Sampled:                            | 6/18/98                                          |
| % Moisture: not dec. |                    | Date Analyzed:                           | 7/1/98                                           |
| GC Column: DB-624    | ID:0.53(n          | nm)————Dilution Factor:                  | 1.0                                              |
| Soil Extract Volume: | (uL)               | Soil Aliquot Volume:                     | (uL)                                             |
| CAS No.              | Compound (1        | Concentration Units: ug/L or ug/Kg) ug/L | Q                                                |
|                      | TPH-Gasoline Range | 78                                       |                                                  |
| <del></del>          |                    |                                          |                                                  |
|                      |                    |                                          |                                                  |
|                      |                    |                                          |                                                  |
|                      |                    |                                          |                                                  |
|                      |                    | -                                        |                                                  |
|                      |                    |                                          |                                                  |
|                      |                    |                                          |                                                  |
|                      |                    |                                          |                                                  |
|                      |                    |                                          |                                                  |
|                      |                    |                                          |                                                  |
|                      |                    |                                          |                                                  |
|                      |                    |                                          |                                                  |
|                      |                    |                                          |                                                  |
|                      |                    |                                          |                                                  |
|                      |                    |                                          |                                                  |
|                      |                    |                                          |                                                  |
|                      |                    |                                          |                                                  |
|                      |                    |                                          | <del>                                     </del> |
|                      |                    |                                          |                                                  |

EPA SAMPLE NO.

NASBFF04WP006

| Lab Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab Name:      | EA LABOR | ATORIES    |                                       |             | Report#:     | 981036           |               |            |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|------------|---------------------------------------|-------------|--------------|------------------|---------------|------------|------|
| Sample wt/vol:         5.0 (g/mL)         ML         Lab File ID: VD4J3008.D           Level: (low/med)         Date Sampled:         6/18/98           % Moisture: not dec.         Date Analyzed:         7/1/98           GC Column: DB-624         ID: 0.53 (mm)         Dilution Factor:         10.0           Soil Extract Volume:         (uL)         Soil Aliquot Volume:         (uL)           CAS No.         Compound         (ug/L or ug/Kg)         ug/L         Q           TPH-Gasoline Range         15000         E | Lab Code:      | EA ENG   | -          | Client: I                             | FUEL FAR    | Method:      | 4.2.17           |               | SDG No.:   | 10   |
| Level: (low/med)       Date Sampled: 6/18/98         % Moisture: not dec.       Date Analyzed: 7/1/98         GC Column: DB-624       ID: 0.53 (mm)       Dilution Factor: 10.0         Soil Extract Volume:       (uL)         Concentration Units:         CAS No.       Compound       (ug/L or ug/Kg)       ug/L       Q         TPH-Gasoline Range       15000       E                                                                                                                                                             | _ rix: (soil   | /water)  | WATER      |                                       |             |              | Lai              | Sample ID:    | #9807471   |      |
| % Moisture: not dec.         Date Analyzed: 7/1/98           GC Column: DB-624         ID: 0.53 (mm)         Dilution Factor: 10.0           Soil Extract Volume: (uL)         Soil Aliquot Volume: (uL)           Concentration Units: (ug/L or ug/Kg)         ug/L Q           TPH-Gasoline Range         15000         E                                                                                                                                                                                                             | Sample wt/vo   | ol:      | 5.0        | (g/mL) _                              | ML          |              |                  | Lab File ID:  | VD4J3008.D |      |
| GC Column:         DB-624         ID:         0.53 (mm)         Dilution Factor:         10.0           Soil Extract Volume:         (uL)         Soil Aliquot Volume:         (uL)           Concentration Units:         Compound         (ug/L or ug/Kg)         ug/L         Q           TPH-Gasoline Range         15000         E                                                                                                                                                                                                 | Level: (lov    | w/med)   |            |                                       |             |              | Da               | ite Sampled:  | 6/18/98    |      |
| Soil Extract Volume: (uL)  Concentration Units:  CAS No. Compound (ug/L or ug/Kg) ug/L Q  TPH-Gasoline Range 15000 E                                                                                                                                                                                                                                                                                                                                                                                                                    | % Moisture:    | not dec. |            |                                       |             |              | Da               | te Analyzed:  | 7/1/98     |      |
| CAS No. Compound (ug/L or ug/Kg) ug/L Q  TPH-Gasoline Range 15000 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GC Column:     | DB-624   |            | ID:                                   | 0.53 (n     | nm)          | Dil              | ution Factor: | 10.0       | _    |
| CAS No. Compound (ug/L or ug/Kg) ug/L Q  TPH-Gasoline Range 15000 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Soil Extract V | Volume:  |            | (uL)                                  |             |              | Soil Alie        | quot Volume:  |            | (uL) |
| TPH-Gasoline Range 15000 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |          |            |                                       |             | Concentra    | tion Units:      |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAS            | S No.    |            |                                       |             | ug/L or ug/l | Kg)              | ug/L          | Q          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          | TPH-Gasoli | ne Range                              | ;           |              | 15000            |               | E          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            | **                                    |             | -            |                  |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            | ·                                     |             |              | -                |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            |                                       |             |              |                  |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            |                                       | <del></del> | <u> </u>     | <del></del>      | <del></del>   |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            |                                       |             |              |                  |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            |                                       |             |              |                  |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            |                                       |             |              |                  |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          | ,          |                                       |             |              |                  |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 777-7-1  |            |                                       |             |              |                  |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            | · · · · · · · · · · · · · · · · · · · |             |              |                  |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            |                                       |             |              | -                |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            |                                       |             |              | <del></del>      |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            |                                       | _           |              |                  |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            |                                       |             |              |                  |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            |                                       |             |              |                  |               |            | •    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            |                                       |             | i<br>        | <del>- , "</del> |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            |                                       |             |              |                  |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del> </del>   |          |            |                                       |             |              |                  | <del> </del>  |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            |                                       |             |              |                  |               |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |            |                                       |             |              |                  |               |            |      |

EPA SAMPLE NO.

**VOLATILE ORGANICS ANALYSIS DATA SHEET** NASBFF04WP007 Lab Name: EA LABORATORIES Report#: 981036 Client: FUEL FAR Method: 4.2.17 Lab Code: EA ENG SDG No.: Lab Sample ID: #9807472 Matrix: (soil/water) WATER Sample wt/vol: 5.0 (g/mL) ML Lab File ID: VD4J3007.D Level: (low/med) Date Sampled: 6/18/98 % Moisture: not dec. Date Analyzed: 7/1/98 ID:\_\_0.53\_\_(mm)\_\_\_\_\_\_\_Dilution Factor:\_\_\_\_1.0\_\_\_\_\_ -GC-Column:-DB-624---Soil Aliquot Volume: \_\_\_\_\_ (uL) Soil Extract Volume: (uL) Concentration Units: CAS No. Compound (ug/L or ug/Kg) ug/L Q TPH-Gasoline Range 45

EPA SAMPLE NO.
HEET
NASBFF04WP008

| Lab Name: EA LABOI   | RATORIES           | Report#:      | 981036               |            |      |
|----------------------|--------------------|---------------|----------------------|------------|------|
| Lab Code: EA ENG     | Client: FUEL FAR   | Method: 4     | .2.17                | SDG No.:   |      |
| rix: (soil/water)    | WATER              |               | Lab Sample ID:       | #9807473   | _    |
| Sample wt/vol:       |                    |               | Lab File ID:         | VD4J2989.I | 2    |
| Level: (low/med)     |                    |               | Date Sampled:        | 6/18/98    | _    |
| % Moisture: not dec. |                    |               | Date Analyzed:       | 7/1/98     | _    |
| GC Column: DB-624    | ID: 0.53 (n        | nm)           | Dilution Factor:     | 1.0        |      |
| Soil Extract Volume: | (uL)               |               | Soil Aliquot Volume: |            | (uL) |
| CAS No.              | Compound (1        | Concentration |                      | Q          |      |
|                      | TPH-Gasoline Range | T             | 150                  |            | ]    |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
|                      |                    |               |                      |            |      |
| 1                    |                    |               |                      |            |      |

EPA SAMPLE NO.

NASBFF04WP009 Report#: 981036 Lab Name: EA LABORATORIES Client: FUEL FAR Method: 4.2.17 SDG No.: Lab Code: EA ENG WATER Lab Sample ID: #9807474 Matrix: (soil/water) 5.0 (g/mL) ML Lab File ID: VD4J2990.D Sample wt/vol: Date Sampled: 6/18/98 Level: (low/med) Date Analyzed: 7/1/98 % Moisture: not dec. ID: 0.53 (mm) Dilution Factor: 1.0 --GC-Column: DB-624 Soil Aliquot Volume: \_\_\_\_\_ (uL) Soil Extract Volume: (uL) Concentration Units: CAS No. Compound (ug/L or ug/Kg) Q ug/L 43 TPH-Gasoline Range

EPA SAMPLE NO.
NASBFF04WP010

| Lab Name:    | EA LABOR    | ATORIES       |           |                                        | Report#:                | 9810   | 036              |            |      |
|--------------|-------------|---------------|-----------|----------------------------------------|-------------------------|--------|------------------|------------|------|
| Lab Code:    | EA ENG      | _             | Client: I | FUEL FAR                               | Method:                 | 4.2.17 |                  | SDG No.:   |      |
| rix: (soi    | il/water)   | WATER         | _         |                                        |                         |        | Lab Sample ID:   | #9807475   |      |
| Sample wt/v  | ol:         | 5.0           | (g/mL)    | ML                                     |                         |        | Lab File ID:     | VD4J2991.D | •    |
| Level: (lo   | ow/med)     |               |           |                                        |                         |        | Date Sampled:    | 6/18/98    |      |
| % Moisture:  | not dec.    |               | •         |                                        |                         |        | Date Analyzed:   | 7/1/98     |      |
| GC Column    | DB-624      |               | ID:       | 0.53 (n                                | nm)                     |        | Dilution Factor: | 1.0        | »    |
| Soil Extract | Volume:     |               | (uL)      |                                        |                         | Soil . | Aliquot Volume:  |            | (uL) |
| CA           | S No.       | Compound      |           | (1                                     | Concentrating/L or ug/l |        | ts:<br>ug/L      | Q          |      |
|              |             | TPH-Gasoli    | ne Range  | ,                                      |                         |        | 180              |            |      |
| -            | <del></del> | <del></del> , |           |                                        |                         |        |                  |            |      |
|              |             |               |           |                                        |                         |        |                  |            |      |
|              |             |               |           |                                        |                         |        |                  |            |      |
|              |             |               |           |                                        |                         |        |                  |            |      |
|              |             |               |           | ······································ |                         |        |                  |            |      |
|              |             |               | -         |                                        |                         |        |                  |            |      |
|              |             |               |           |                                        |                         | ,      |                  |            |      |
|              |             |               |           |                                        |                         |        |                  |            |      |
|              |             |               |           |                                        |                         |        |                  |            |      |
|              |             |               |           |                                        |                         |        |                  |            |      |
|              |             |               |           |                                        |                         |        |                  |            |      |
|              |             |               |           |                                        |                         |        |                  |            |      |
|              |             |               |           |                                        |                         |        |                  |            |      |
| -            |             |               | ·         |                                        |                         |        |                  |            |      |
|              |             |               |           |                                        |                         |        |                  |            |      |
|              |             |               |           |                                        |                         |        |                  |            |      |
|              |             |               |           |                                        |                         |        |                  |            |      |
|              |             |               | ··        | -                                      |                         |        |                  |            |      |
|              |             |               |           | ···                                    |                         |        |                  |            |      |
|              |             |               |           |                                        |                         |        |                  |            |      |

EPA SAMPLE NO.

(uL)

Date Sampled: 6/18/98

Date Analyzed: 7/1/98

NASBFF04WP011 EA LABORATORIES Lab Name: Report#: 981036 Client: FUEL FAR Method: Lab Code: EA ENG 4.2.17 SDG No.: WATER Matrix: (soil/water) Lab Sample ID: #9807476 Sample wt/vol: 5.0 (g/mL) MLLab File ID: VD4J3009.D

GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 2.0

Level:

(low/med)

% Moisture: not dec.

Soil Extract Volume: (uL) Soil Aliquot Volume:

### Concentration Units:

| CAS No.                                 | Compound                               | (ug/L or ug/Kg) |             | Q                                                |
|-----------------------------------------|----------------------------------------|-----------------|-------------|--------------------------------------------------|
|                                         | TPH-Gasoline Range                     | 11              | 800         |                                                  |
|                                         |                                        |                 |             |                                                  |
|                                         | <u> </u>                               | - <u></u>       |             |                                                  |
|                                         | . <u></u>                              |                 |             |                                                  |
|                                         |                                        |                 | <u> </u>    |                                                  |
|                                         |                                        |                 |             |                                                  |
|                                         |                                        |                 |             |                                                  |
|                                         |                                        | -               |             | <del>                                     </del> |
|                                         |                                        |                 |             | <del> </del>                                     |
|                                         |                                        |                 |             | <del>                                     </del> |
| <del></del>                             |                                        |                 | <del></del> | <del> </del>                                     |
|                                         |                                        |                 |             | <del>                                     </del> |
| <del></del>                             |                                        |                 |             |                                                  |
|                                         |                                        |                 |             |                                                  |
|                                         |                                        |                 |             |                                                  |
|                                         |                                        |                 |             |                                                  |
|                                         |                                        |                 |             |                                                  |
|                                         |                                        |                 |             |                                                  |
|                                         |                                        |                 |             |                                                  |
|                                         |                                        |                 | ···         |                                                  |
| ····                                    | ····                                   |                 |             |                                                  |
|                                         |                                        |                 |             |                                                  |
| · - · · · · · · · · · · · · · · · · · · | ······································ |                 |             |                                                  |
|                                         | ······································ |                 |             |                                                  |
|                                         |                                        |                 |             |                                                  |
|                                         |                                        |                 |             |                                                  |
| · · · · · · · · · · · · · · · · · · ·   |                                        |                 |             |                                                  |
|                                         |                                        |                 | ·           |                                                  |
|                                         |                                        |                 |             | ļ                                                |
|                                         |                                        |                 |             |                                                  |
|                                         |                                        |                 |             |                                                  |
|                                         |                                        |                 |             |                                                  |

EPA SAMPLE NO.

|                |             |                                        |                  |              |             |               | NASBFF04V                                        | WP012 |
|----------------|-------------|----------------------------------------|------------------|--------------|-------------|---------------|--------------------------------------------------|-------|
| Lab Name:      | EA LABOI    | RATORIES                               |                  | Report#:     | 981036      |               |                                                  |       |
| Lab Code:      | EA ENG      | -                                      | Client: FUEL FAR | Method:      | 4.2.17      |               | SDG No.:                                         |       |
| atrix: (soi    | l/water)    | WATER                                  |                  |              | Lab         | Sample ID:    | #9807477                                         |       |
| Sample wt/vo   | ol:         | 5.0                                    | (g/mL) ML        |              |             | Lab File ID   | : <u>VD4J2993.D</u>                              | )     |
| Level: (lov    | w/med)      |                                        | •                |              | Da          | te Sampled:   | 6/18/98                                          |       |
| % Moisture:    | not dec.    |                                        |                  |              | Dat         | te Analyzed:  | 7/1/98                                           |       |
| -GC Column:    | DB-624      |                                        | ID:0.53(n        | nm)          | Dil         | ution Factor: | 1.0                                              |       |
| Soil Extract V | Volume:     |                                        | (uL)             |              | Soil Aliq   | uot Volume:   |                                                  | (uL)  |
|                |             |                                        |                  | Concentrat   | tion Units: |               |                                                  |       |
| CAS            | S No.       | Compound                               | (1               | ıg/L or ug/l | Kg)         | ug/L          | Q                                                |       |
|                |             | TPH-Gasoli                             | ne Range         |              | 70          |               |                                                  |       |
|                |             |                                        |                  |              |             |               | <del>                                     </del> |       |
| <u> </u>       |             |                                        |                  |              |             |               | <del>                                     </del> |       |
|                |             |                                        |                  |              |             |               |                                                  |       |
|                |             |                                        |                  |              |             |               | <del>                                     </del> |       |
|                |             |                                        |                  |              |             | <del></del>   |                                                  |       |
| -              |             |                                        |                  |              | ·           |               |                                                  |       |
|                | <del></del> |                                        |                  |              | · <u>-</u>  | - <u></u>     |                                                  |       |
|                |             |                                        |                  |              |             |               |                                                  |       |
| -              |             |                                        |                  |              |             |               |                                                  |       |
|                |             |                                        |                  |              |             | -             |                                                  |       |
|                |             |                                        |                  |              |             |               |                                                  |       |
| <del></del>    |             |                                        |                  |              |             |               |                                                  |       |
|                |             |                                        |                  |              |             |               |                                                  |       |
| <del> </del>   |             |                                        |                  | <del></del>  |             |               |                                                  |       |
|                |             |                                        |                  |              |             | ·             |                                                  |       |
|                |             |                                        |                  |              |             |               |                                                  |       |
|                | <del></del> |                                        |                  | <del></del>  |             |               |                                                  |       |
|                |             |                                        |                  |              |             |               |                                                  |       |
|                |             |                                        |                  |              |             |               |                                                  |       |
|                |             |                                        |                  | <del></del>  |             |               |                                                  |       |
| <u> </u>       |             |                                        |                  |              | ·····       |               |                                                  |       |
| <del> </del>   | <del></del> | ······································ |                  |              |             |               |                                                  |       |
|                |             |                                        |                  |              | ·- <u></u>  |               |                                                  |       |

EPA SAMPLE NO. **VOLATILE ORGANICS ANALYSIS DATA SHEET** NASBFF04WP013 981036 Lab Name: EA LABORATORIES Report#: Client: FUEL FAR Method: 4.2.17 SDG No.: Lab Code: EA ENG Lab Sample ID: #9807478 Matrix: (soil/water) WATER Lab File ID: VD4J2994.D Sample wt/vol: 5.0 (g/mL) ML Date Sampled: 6/18/98 Level: (low/med) Date Analyzed: 7/1/98 % Moisture: not dec. Dilution Factor: 1.0 --- GC Column: DB-624 ID: 0.53 (mm) Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Concentration Units: Compound (ug/L or ug/Kg) CAS No. ug/L Q TPH-Gasoline Range 49

|      | <u> </u> |
|------|----------|
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      | -        |
|      |          |
|      |          |
| <br> |          |
|      |          |
|      |          |
|      |          |
|      |          |
|      |          |
| <br> |          |
|      |          |
|      |          |
|      |          |

EPA SAMPLE NO.
NASBFF04WP014

| Lab Name:     | EA LABOI  | RATORIES    |           |          | Report#:  | 9810   | )36              |            |      |
|---------------|-----------|-------------|-----------|----------|-----------|--------|------------------|------------|------|
| Lab Code:     | EA ENG    | _           | Client:   | FUEL FAR | Method:   | 4.2.17 |                  | SDG No.:   |      |
| rix: (soi     | il/water) | WATER       | -         |          |           |        | Lab Sample ID:   | #9807479   |      |
| Sample wt/v   | ol:       | 5.0         | (g/mL)    | ML       |           |        | Lab File ID:     | VD4J2995.D | ı    |
| Level: (lo    | ow/med)   |             | _         |          |           |        | Date Sampled:    | 6/18/98    |      |
| % Moisture:   | not dec.  |             | -         |          |           |        | Date Analyzed:   | 7/1/98     |      |
| GC Column     | DB-624    | <u></u>     | ID:       | 0.53 (n  | nm)       |        | Dilution Factor: | 1.0        | _    |
| Soil Extract  | Volume:   |             | (uL)      |          |           | Soil A | Aliquot Volume:  |            | (uL) |
| CA            | S No.     | Compound    |           | (1       | Concentra |        | ts:<br>ug/L      | Q          |      |
|               |           | TPH-Gasol   | ine Range |          |           | 1      | 80               |            |      |
|               |           |             | _         |          |           |        |                  |            |      |
|               |           |             |           |          |           | -      |                  |            |      |
|               |           |             | <i>,</i>  |          |           |        |                  |            |      |
|               |           |             |           |          |           |        |                  |            |      |
|               |           |             |           |          |           |        |                  |            |      |
| ļ <del></del> |           |             |           |          |           |        |                  |            |      |
|               |           |             |           |          |           |        |                  |            |      |
|               |           | <del></del> |           |          |           |        |                  |            |      |
|               |           |             |           |          |           |        |                  |            |      |
|               |           |             |           | •        |           |        |                  |            |      |
|               |           |             |           |          |           |        |                  |            |      |
|               |           |             | ,         |          |           |        |                  |            |      |
|               |           |             |           |          |           |        |                  |            |      |
|               |           |             |           |          |           |        |                  |            | •    |
|               |           |             |           |          |           |        | <u> </u>         |            |      |
|               |           |             |           |          |           |        |                  |            |      |
|               |           |             |           |          |           |        |                  |            |      |
|               |           |             |           |          |           |        |                  |            |      |
|               |           |             |           |          |           |        |                  |            |      |

EPA SAMPLE NO.

NASBFF04WP015 Report#: Lab Name: EA LABORATORIES 981036 4.2.17 EA ENG Client: FUEL FAR Method: SDG No.: Lab Code: Matrix: (soil/water) WATER Lab Sample ID: #9807480 Lab File ID: VD4J2996.D Sample wt/vol: 5.0 (g/mL) MLDate Sampled: 6/18/98 Level: (low/med) % Moisture: not dec. Date Analyzed: 7/1/98 ID: 0.53 Dilution Factor: 1.0 GC Column: DB-624 (mm) \_(uL) Soil Aliquot Volume: (uL) Soil Extract Volume: Concentration Units: Compound (ug/L or ug/Kg) CAS No. ug/L Q TPH-Gasoline Range 1900 E

EPA SAMPLE NO.

| Lab Name:                                        | EA LABO       | RATORIES       |              |          | Report#:  | 98103     | 36              | NASBFF04W           | VP016 |
|--------------------------------------------------|---------------|----------------|--------------|----------|-----------|-----------|-----------------|---------------------|-------|
| Lab Code:                                        | EA ENG        |                | Client:      | FUEL FAR | Method:   | 4.2.17    | · · ·           | SDG No.:            |       |
| atrix: (soi                                      | il/water)     | WATER          | _            |          |           | L         | ab Sample ID:   | #9807481            |       |
| Sample wt/ve                                     | ol:           | 5.0            | (g/mL)       | ML       |           |           | Lab File ID     | : <u>VD4J2997.D</u> | •     |
| Level: (lo                                       | w/med)        |                | _            |          |           | I         | Date Sampled:   | 6/18/98             |       |
| % Moisture:                                      | not dec.      |                | _            |          |           | Γ         | Date Analyzed:  | 7/1/98              |       |
| GC-Column:                                       | DB-624        | - 1            | ID:          | 0.53(n   | nm)       | D         | ilution Factor: | 1.0                 |       |
| Soil Extract                                     | Volume:       |                | _(uL)        |          |           | Soil A    | liquot Volume:  |                     | (uL)  |
| CA                                               | S No.         | Compound       |              | (1       | Concentra |           | :<br>_ug/L      | Q                   |       |
|                                                  |               | TPH-Gasol      | ine Range    | ;        |           |           | 35              |                     |       |
|                                                  |               |                |              |          |           |           |                 |                     |       |
|                                                  |               |                |              | ······   |           |           |                 |                     |       |
|                                                  |               |                |              |          |           |           |                 |                     |       |
|                                                  |               |                |              |          |           |           |                 |                     |       |
|                                                  |               |                |              |          |           |           | <u> </u>        |                     |       |
|                                                  |               |                |              |          |           | · · · · · |                 |                     |       |
| -                                                |               |                |              |          |           |           |                 |                     |       |
|                                                  |               |                |              |          |           |           | ·               |                     |       |
| -                                                | <del></del> - |                | <del>-</del> | ·        |           |           | <del></del>     |                     |       |
|                                                  |               |                |              |          |           |           |                 |                     |       |
| -                                                | <u></u>       | <del> </del>   |              | ·        |           |           |                 |                     |       |
|                                                  |               |                |              |          |           |           |                 |                     |       |
|                                                  |               |                |              |          |           |           |                 |                     |       |
|                                                  |               |                |              |          |           |           |                 |                     |       |
| -                                                | <del></del>   | · <del> </del> |              |          |           |           |                 |                     | ,     |
|                                                  |               |                |              |          |           | - "       |                 |                     |       |
| -                                                |               |                |              |          |           | w         |                 |                     |       |
| <del>                                     </del> |               |                |              |          |           |           |                 |                     |       |
|                                                  |               |                |              |          |           |           |                 |                     |       |
| -                                                |               |                |              |          |           |           | · -             |                     |       |
|                                                  |               |                |              |          |           |           |                 |                     |       |

1A VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

NASBFF04WP017

| Lab Name:    | EA LABOR | RATORIES   |                   | Report#:                  | 98103                | 6               |            |      |
|--------------|----------|------------|-------------------|---------------------------|----------------------|-----------------|------------|------|
| Lab Code:    | EA ENG   |            | Client: FUEL FA   | R Method:                 | 4.2.17               |                 | SDG No.:   |      |
| Matrix: (soi | l/water) | WATER      | _                 |                           | L                    | ab Sample ID:   | #9807482   |      |
| Sample wt/vo | ol:      | 5.0        | (g/mL) ML         | ,                         |                      | Lab File ID     | VD4J2998.D | )    |
| Level: (lo   | w/med)   |            | _                 |                           | D                    | Date Sampled:   | 6/18/98    |      |
| % Moisture:  | not dec. |            |                   |                           | D                    | ate Analyzed:   | 7/1/98     |      |
| -GC Column:  | DB-624   |            | ID: <u>. 0.53</u> | (mm)                      | D                    | ilution Factor: | 1.0        |      |
| Soil Extract | Volume:  |            | (uL)              |                           | Soil Al              | iquot Volume:   |            | (uL) |
| CA           | S No.    | Compound   |                   | Concentra<br>(ug/L or ug/ | ition Units:<br>(Kg) | ug/ <u>L</u>    | Q          |      |
|              |          | TPH-Gasoli | ine Range         |                           | 4                    | 0               |            |      |
|              |          |            |                   |                           |                      |                 |            |      |
|              |          |            |                   |                           |                      |                 |            |      |
|              |          |            |                   |                           |                      |                 |            |      |
|              |          |            |                   | <del></del>               |                      |                 |            |      |
|              |          |            |                   |                           |                      |                 |            |      |
| <u></u>      |          |            |                   |                           | ·                    |                 |            |      |
|              |          |            |                   |                           |                      |                 |            |      |
|              |          |            |                   |                           |                      |                 |            |      |
|              |          |            |                   |                           | ····                 |                 |            |      |
|              |          |            |                   | <u> </u>                  |                      |                 |            |      |
| ļ            |          |            |                   |                           |                      |                 |            |      |
| <u></u>      | <u></u>  |            |                   | _                         |                      | -               |            |      |
|              |          |            |                   |                           |                      |                 |            |      |
|              |          |            |                   |                           |                      |                 |            | •    |
|              |          |            |                   |                           |                      |                 |            |      |
|              |          |            |                   |                           |                      |                 |            |      |
| <u> </u>     |          |            |                   | <del></del>               |                      |                 |            |      |
|              |          |            |                   |                           |                      |                 |            |      |
|              |          |            |                   | +                         |                      |                 |            |      |

| EPA | <b>SAMPLE</b> | NO. |
|-----|---------------|-----|
|     |               |     |

NASBFF04WP018 Report#: 981036 Lab Name: EA LABORATORIES SDG No.: Lab Code: EA ENG Client: FUEL FAR Method: 4.2.17 atrix: (soil/water) WATER Lab Sample ID: #9807483 Sample wt/vol: 5.0 (g/mL) MLLab File ID: VD4J2999.D Level: (low/med) Date Sampled: 6/18/98 % Moisture: not dec. Date Analyzed: 7/1/98 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0\_\_\_ Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Concentration Units: CAS No. Compound (ug/L or ug/Kg) ug/L Q TPH-Gasoline Range 24

EPA SAMPLE NO.
NASBFF04WP019

| Lab Name: EA LABO    | RATORIES           | Report#: 981036      |                      |
|----------------------|--------------------|----------------------|----------------------|
| Lab Code: EA ENG     | Client: FUEL FAR   | Method: 4.2.17       | SDG No.:             |
| Matrix: (soil/water) | WATER              | Lab Sample ID        | : <u>#9807484</u>    |
| Sample wt/vol:       | 5.0 (g/mL) ML      | Lab File II          | D: <u>VD4J3000.D</u> |
| Level: (low/med)     |                    | Date Sampled:        | 6/18/98              |
| % Moisture: not dec. |                    | Date Analyzed        | :7/1/98              |
| GC Column: DB-624    | ID: 0.53 (I        | nm) Dilution Facto   | r: <u>1.0</u>        |
| Soil Extract Volume: | (uL)               | Soil Aliquot Volume  | e: (uL)              |
|                      |                    | Concentration Units: |                      |
| CAS No.              |                    | ug/L or ug/Kg) ug/L  | Q<br>                |
|                      | TPH-Gasoline Range | 3800                 | E                    |
|                      | Name of American   |                      |                      |
|                      |                    |                      | <del>- </del>        |
|                      |                    |                      |                      |
|                      |                    | :                    |                      |
|                      |                    |                      |                      |
|                      |                    |                      |                      |
|                      |                    |                      |                      |
|                      |                    |                      |                      |
|                      |                    |                      |                      |
|                      | *****              |                      | -                    |
|                      |                    |                      |                      |
|                      |                    |                      |                      |
|                      |                    |                      |                      |
|                      |                    |                      |                      |
|                      |                    |                      | ·                    |
|                      |                    |                      |                      |
|                      |                    |                      |                      |
|                      |                    |                      | +                    |
|                      |                    |                      |                      |
|                      |                    |                      |                      |

EPA SAMPLE NO.

| Lab Name:    | EA LABO      | RATORIES     |                 | Report#:                  | 981036            | NASBFF04V                                        | WXD1 |
|--------------|--------------|--------------|-----------------|---------------------------|-------------------|--------------------------------------------------|------|
| Lab Code:    | EA ENG       | _ (          | Client: FUEL F  | FAR Method:               | 4.2.17            | SDG No.:                                         |      |
| atrix: (soi  | il/water)    | WATER        |                 |                           | Lab Sample        | ID: <u>#9807485</u>                              | _    |
| Sample wt/v  | ol:          | 5.0 (8       | g/mL) ML        |                           | Lab File          | ID: <u>VD4J3010.</u> [                           | )    |
| Level: (lo   | w/med)       |              |                 |                           | Date Sample       | ed: 6/18/98                                      |      |
| % Moisture:  | not dec.     |              |                 |                           | Date Analyz       | ed: 7/1/98                                       |      |
| GC Column:   | DB-624       | <u>-</u>     | ID: <u>0.53</u> | _(mm)                     | . Dilution Fac    | tor:1.0                                          |      |
| Soil Extract | Volume:      | (ı           | ıL)             |                           | Soil Aliquot Volu | me:                                              | (uL) |
| CA           | S No.        | Compound     |                 | Concentrate (ug/L or ug/l |                   | _ Q                                              |      |
|              |              | TPH-Gasoline | Range           |                           | 32                |                                                  |      |
|              | · "·····     |              |                 |                           |                   |                                                  |      |
|              |              |              |                 |                           |                   |                                                  |      |
|              |              |              |                 |                           |                   |                                                  |      |
|              |              |              |                 |                           |                   |                                                  |      |
|              |              |              |                 |                           |                   |                                                  |      |
|              |              | <del> </del> |                 |                           |                   |                                                  |      |
|              |              |              |                 |                           |                   |                                                  |      |
|              |              |              |                 |                           |                   |                                                  |      |
|              |              |              |                 |                           |                   |                                                  |      |
| <u> </u>     |              |              |                 |                           |                   |                                                  |      |
|              |              |              |                 |                           |                   |                                                  |      |
| -            |              | <del></del>  |                 |                           |                   |                                                  |      |
|              |              |              |                 |                           | •                 |                                                  |      |
|              |              |              |                 |                           |                   |                                                  |      |
|              | ******       |              |                 |                           |                   |                                                  |      |
|              |              |              |                 |                           |                   |                                                  |      |
|              |              |              |                 |                           |                   |                                                  |      |
|              |              |              |                 |                           |                   |                                                  |      |
|              | <del>-</del> |              |                 |                           |                   |                                                  |      |
|              |              |              |                 |                           | <del></del>       | <del>                                     </del> | -    |
|              |              |              |                 | _                         |                   |                                                  |      |
|              |              |              |                 |                           |                   |                                                  |      |

EPA SAMPLE NO. 1A **VOLATILE ORGANICS ANALYSIS DATA SHEET** NASBFF04WXD2 Lab Name: EA LABORATORIES Report#: 981036 Lab Code: EA ENG Client: FUEL FAR Method: 4.2.17 SDG No.: Matrix: (soil/water) WATER Lab Sample ID: #9807486 Sample wt/vol: 5.0 (g/mL) ML Lab File ID: VD4J3011.D Level: (low/med) Date Sampled: 6/18/98 % Moisture: not dec. Date Analyzed: 7/2/98 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Concentration Units:

|          |                                        | Concentration U |             | _                                                |  |
|----------|----------------------------------------|-----------------|-------------|--------------------------------------------------|--|
| CAS No.  | Compound                               | (ug/L or ug/Kg) | ug/L        | Q                                                |  |
|          | TPH-Gasoline Range                     |                 | 10          | U                                                |  |
|          |                                        |                 |             |                                                  |  |
|          |                                        |                 |             |                                                  |  |
|          |                                        |                 |             |                                                  |  |
|          |                                        |                 |             |                                                  |  |
| <u> </u> |                                        |                 |             |                                                  |  |
|          |                                        |                 |             |                                                  |  |
|          |                                        |                 |             | <del> </del>                                     |  |
|          |                                        |                 |             |                                                  |  |
|          | · · · · · · · · · · · · · · · · · · ·  |                 | <del></del> | <del> </del>                                     |  |
|          |                                        |                 |             | ļ                                                |  |
|          | <del></del>                            |                 |             | <del> </del>                                     |  |
|          | ······································ |                 |             |                                                  |  |
|          |                                        |                 |             |                                                  |  |
|          | <u> </u>                               |                 |             | <del>                                     </del> |  |
|          |                                        |                 |             |                                                  |  |
|          |                                        |                 |             |                                                  |  |
|          |                                        |                 |             |                                                  |  |
|          |                                        |                 |             |                                                  |  |
|          |                                        |                 |             |                                                  |  |
|          |                                        |                 |             |                                                  |  |
|          | ···                                    |                 | <del></del> |                                                  |  |
|          |                                        |                 |             |                                                  |  |
|          |                                        |                 |             | <u> </u>                                         |  |
|          |                                        |                 |             | ļ                                                |  |
|          |                                        |                 |             |                                                  |  |
|          |                                        |                 |             | <del> </del>                                     |  |
|          |                                        |                 |             | <u> </u>                                         |  |
|          |                                        |                 | -           |                                                  |  |
|          |                                        |                 |             | <del> </del>                                     |  |
|          |                                        | _               |             | <del> </del>                                     |  |
|          |                                        |                 |             |                                                  |  |

|             |                | EPA SAMPLE NO. |
|-------------|----------------|----------------|
| ALYS        | SIS DATA SHEET |                |
| <b>.</b> #. | 091036         | VBLK01         |

| Lab Name:    | EA LABO   | RATORIES                 |           |          | Report#:  | 981036             |               |                     |      |
|--------------|-----------|--------------------------|-----------|----------|-----------|--------------------|---------------|---------------------|------|
| Lab Code:    | EA ENG    | _                        | Client: 1 | FUEL FAR | Method:   | 4.2.17             |               | SDG No.:            |      |
| atrix: (soi  | il/water) | WATER                    | _         |          |           | Lab                | Sample ID:    | VB806308            |      |
| Sample wt/v  | ol:       | 5.0                      | _(g/mL) _ | ML       |           |                    | Lab File ID:  | : <u>VD4J2976.D</u> |      |
| Level: (lo   | w/med)    |                          | _         |          |           | Dat                | te Sampled:   |                     |      |
| % Moisture:  | not dec.  |                          | _         |          |           | Dat                | e Analyzed:   | 6/30/98             |      |
| GC Column:   | DB-624    | <u>.</u>                 | ID:       | 0.53 (n  | nm)       | Dilı               | ition Factor: | 1.0                 |      |
| Soil Extract | Volume:   |                          | (uL)      |          |           | Soil Aliq          | uot Volume:   |                     | (uL) |
| CA           | S No.     | Compound                 |           | (1       | Concentra | tion Units:<br>Kg) | ug/L          | Q                   |      |
|              |           | TPH-Gasol                |           |          |           | 10                 |               | U                   |      |
|              |           |                          |           |          |           |                    |               |                     |      |
| -            |           |                          |           |          | <br>      |                    |               |                     |      |
|              |           |                          |           |          |           |                    |               |                     |      |
|              |           |                          |           |          |           |                    |               |                     |      |
|              |           |                          |           |          |           |                    |               |                     |      |
|              |           |                          |           |          |           |                    |               |                     |      |
|              |           |                          |           |          |           |                    |               |                     |      |
|              |           |                          |           |          |           |                    |               |                     |      |
| -            |           | , <u>,</u> <del></del> , |           |          |           |                    |               |                     |      |
|              |           |                          |           |          |           |                    |               |                     |      |
|              |           |                          |           |          |           |                    |               |                     |      |
|              |           |                          |           |          |           |                    |               |                     |      |
|              |           |                          |           |          |           |                    |               |                     |      |
|              |           |                          |           |          | <u>.</u>  |                    |               |                     |      |
|              |           |                          |           |          |           |                    |               |                     | •    |
|              |           |                          |           | :        | _         |                    |               |                     |      |
|              |           |                          |           |          |           |                    |               |                     |      |
| <u> </u>     |           |                          |           |          |           | <del></del>        |               |                     |      |
|              |           |                          |           |          |           |                    |               |                     |      |
|              |           |                          |           |          |           |                    |               |                     |      |
|              |           |                          |           |          |           |                    |               | i .                 |      |

| EPA SA | MPLE NO. |
|--------|----------|
| VBLK02 |          |

| Lab Name:    | EA LABOR | ATORIES      |                                       |             | Report#:                                         | 981036      |               |                                                  |      |
|--------------|----------|--------------|---------------------------------------|-------------|--------------------------------------------------|-------------|---------------|--------------------------------------------------|------|
| Lab Code:    | EA ENG   | _            | Client: I                             | FUEL FAR    | Method:                                          | 4.2.17      |               | SDG No.:                                         |      |
| Matrix: (soi | l/water) | WATER        | _                                     |             |                                                  | Lat         | Sample ID:    | VB807017                                         |      |
| Sample wt/vo | ol:      | 5.0          | (g/mL)                                | ML          |                                                  |             | Lab File ID:  | VD4J3004.D                                       |      |
| Level: (lo   | w/med)   |              | _                                     |             |                                                  | Da          | te Sampled:   |                                                  |      |
| % Moisture:  | not dec. |              | _                                     |             |                                                  | Da          | te Analyzed:  | 7/1/98                                           |      |
| GC Column:   | DB-624   |              | ID:                                   | 0.53 (r     | nm)                                              | Dil         | ution Factor: | 1.0                                              |      |
| Soil Extract | Volume:  |              | (uL)                                  |             |                                                  | Soil-Alio   | quot Volume:  |                                                  | (uL) |
|              |          |              |                                       |             | Concentra                                        | tion Units: |               |                                                  |      |
| CA           | S No.    | Compound     |                                       |             | ug/L or ug/                                      | Kg)         | ug/L          | Q                                                |      |
| <u> </u>     |          | TPH-Gasol    | ine Range                             | ;<br>       |                                                  | 10          | <u> </u>      | U                                                |      |
|              |          |              | -                                     |             |                                                  |             |               |                                                  |      |
|              |          |              |                                       |             |                                                  |             |               |                                                  |      |
|              |          |              |                                       |             |                                                  |             |               |                                                  |      |
|              |          |              |                                       |             |                                                  | <u> </u>    |               |                                                  |      |
| -            |          |              |                                       |             |                                                  | · · ·       |               |                                                  |      |
|              |          |              |                                       |             | -                                                |             |               |                                                  |      |
|              | ·····    | <del> </del> |                                       |             | <u> </u>                                         |             |               |                                                  |      |
|              |          |              |                                       |             |                                                  |             |               |                                                  |      |
|              |          |              |                                       |             |                                                  |             |               |                                                  |      |
|              | ···      |              |                                       |             |                                                  |             | <del> </del>  |                                                  |      |
|              |          |              |                                       |             |                                                  |             |               |                                                  |      |
|              |          |              |                                       |             | <del> </del>                                     |             | ····-         |                                                  |      |
|              |          |              |                                       |             |                                                  |             |               |                                                  |      |
| -            |          |              |                                       |             |                                                  |             |               |                                                  |      |
|              |          |              |                                       |             |                                                  |             |               |                                                  |      |
|              |          |              |                                       |             |                                                  |             |               |                                                  |      |
|              |          |              | · · · · · · · · · · · · · · · · · · · |             |                                                  |             |               |                                                  |      |
|              |          |              |                                       |             |                                                  |             |               |                                                  |      |
|              |          |              |                                       |             | -                                                |             |               | <del>  </del>                                    |      |
|              |          |              |                                       | <del></del> | <del>                                     </del> |             |               |                                                  |      |
| <u> </u>     |          |              |                                       | <del></del> | <del> </del>                                     |             | <del></del>   | <del>                                     </del> |      |

C. TPH-DRO

EPA SAMPLE NO.

04WP001 Lab Name: EA LABS Contract: FUEL FAR Lab Code: **EAENG** Case No.: 981036 SAS No.: SDG No.: 9807464 Matrix: (soil/water) WATER Lab Sample ID: 9807464 1000 (g/ml) ML Lab File ID: SV2A168R.D Sample wt/vol: LOW Date Received: 06/20/98 Level: (low/med) Date Extracted: 06/24/98 decanted:(Y/N) % Moisture: Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/11/98 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: 1.41 **CONCENTRATION UNITS:** COMPOUND CAS NO. (ug/L or ug/Kg) UG/L Q

DRO AS C10-28 EVEN 4600 E

EPA SAMPLE NO.

4700

D

04WP001 DL EA LABS Contract: FUEL FAR Lab Name: SAS No.: SDG No.: 9807464 Case No.: 981036 Lab Code: EAENG Matrix: (soil/water) WATER Lab Sample ID: 9807464 DL Sample wt/vol: 1000 (g/ml) ML Lab File ID: SV2A201R.D LOW Date Received: 06/20/98 Level: (low/med) Date Extracted: 06/24/98 % Moisture: decanted:(Y/N) Ν Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/12/98 Dilution Factor: 5.0 1.0 (uL) Injection Volume: GPC Cleanup: (Y/N) N pH: 1.41 **CONCENTRATION UNITS:** CAS NO. **COMPOUND** (ug/L or ug/Kg) UG/L Q

DRO AS C10-28 EVEN

EPA SAMPLE NO.

290

04WPRB1 Lab Name: EA LABS Contract: FUEL FAR Case No.: 981036 SAS No.: SDG No.: 9807464 Lab Code: EAENG Matrix: (soil/water) WATER Lab Sample ID: 9807465 Sample wt/vol: 1000 (g/ml) ML Lab File ID: SV2A173R.D Date Received: 06/20/98 Level: (low/med) LOW Date Extracted: 06/24/98 % Moisture: decanted:(Y/N) Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/11/98 Dilution Factor: 1.0 1.0 (uL) Injection Volume: GPC Cleanup: (Y/N) N pH: 1.53 **CONCENTRATION UNITS:** CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

DRO AS C10-28 EVEN

FORM I SV-1

3/90

04WP002

EPA SAMPLE NO.

Lab Name: EA LABS Contract: FUEL FAR Lab Code: EAENG Case No.: 981036 SAS No.: SDG No.: 9807464 Matrix: (soil/water) WATER Lab Sample ID: 9807467 (g/ml) ML Sample wt/vol: 1000 Lab File ID: SV2A174R.D Level: (low/med) LOW Date Received: 06/20/98 % Moisture: decanted:(Y/N) Ν Date Extracted: 06/24/98 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/11/98 1.0 (uL) Dilution Factor: 1.0 Injection Volume: GPC Cleanup: (Y/N) N pH: 1.6 **CONCENTRATION UNITS:** CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q DRO AS C10-28 EVEN 550

**EPA SAMPLE NO.** 

04WP003

| Lab Name:       | EA LABS                           | Contract: | FUEL FAR              | 04777003              |
|-----------------|-----------------------------------|-----------|-----------------------|-----------------------|
| Lab Code:       | EAENG Case No.: 9810              | 36 SAS No | o.: SD                | G No.: <u>9807464</u> |
| Matrix: (soil/w | vater) WATER                      | La        | b Sample ID: 9        | 9807468               |
| Sample wt/vo    | ol: 1000 (g/ml) ML                | La        | b File ID:            | SV2A175R.D            |
| Level: (low/n   | ned) LOW                          | Da        | ite Received: 0       | 06/20/98              |
| % Moisture:     | decanted:(Y/N)                    | N Da      | ite Extracted: 0      | 06/24/98              |
| Concentrated    | Extract Volume: 1000 (uL)         | Da        | ite Analyzed: 0       | 7/12/98               |
| Injection Volu  | ıme: <u>1.0</u> (uL)              | Dil       | ution Factor: 1       | 1.0                   |
| GPC Cleanur     | o: (Y/N) <u>N</u> pH: <u>1.64</u> |           |                       |                       |
|                 |                                   | CONC      | ENTRATION U           | NITS:                 |
| CAS NO          | COMPOUND                          | (ug/L o   | or ug/Kg) <u>UG</u> / | L Q                   |
|                 | DRO AS C10-28 E                   | √EN       | 1                     | 1000 E                |

EPA SAMPLE NO.

04WP003 DL

| Lab Name:       | EA LABS         |            |          | Contract: | FUEL FA     | <u> </u>            |         |
|-----------------|-----------------|------------|----------|-----------|-------------|---------------------|---------|
| Lab Code:       | EAENG           | Case No.:  | 981036   | SAS No    | .:          | SDG No.:            | 9807464 |
| Matrix: (soil/w | vater) <u>W</u> | ATER       |          | Lat       | Sample I    | D: <u>9807468</u>   | B DL    |
| Sample wt/vo    | ol: <u>10</u>   | 000 (g/ml) | ML       | Lab       | File ID:    | SV2A20              | 2R.D    |
| Level: (low/n   | ned) <u>LC</u>  | <u>DW</u>  |          | Dat       | te Receive  | ed: 06/20/98        | 3       |
| % Moisture:     |                 | decanted:( | Y/N)N    | N Dat     | te Extracte | ed: 06/24/98        | 3       |
| Concentrated    | Extract Vol     | ume: 1000  | (uL)     | Dat       | te Analyze  | d: <u>07/12/9</u> 8 | 3       |
| Injection Volu  | me: <u>1.0</u>  | _ (uL)     |          | Dilt      | ution Facto | or: 20.0            |         |
| GPC Cleanur     | o: (Y/N)        | N pH: 1    | .64      |           |             |                     |         |
|                 |                 |            |          | CONCE     | ENTRATIC    | ON UNITS:           |         |
| CAS NO          |                 | COMPOUND   |          | (ug/L o   | ug/Kg)      | UG/L                | _ Q     |
|                 |                 | DRO AS C10 | -28 EVEN |           |             | 10000               | D       |

EPA SAMPLE NO.

04WP004 Lab Name: EA LABS Contract: FUEL FAR SAS No.: SDG No.: 9807464 Lab Code: EAENG Case No.: 981036 Matrix: (soil/water) WATER Lab Sample ID: 9807469 1000 Lab File ID: SV2A176R.D Sample wt/vol: (g/ml) ML LOW Level: (low/med) Date Received: 06/20/98 % Moisture: Date Extracted: 06/24/98 decanted:(Y/N) Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/12/98 Dilution Factor: 1.0 Injection Volume: 1.0 (uL) GPC Cleanup: (Y/N) N pH: 1.64 **CONCENTRATION UNITS:** CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 280 DRO AS C10-28 EVEN

EPA SAMPLE NO.

04WP005

EA LABS Contract: FUEL FAR Lab Name: Lab Code: EAENG Case No.: 981036 SAS No.: SDG No.: 9807464 Lab Sample ID: 9807470 Matrix: (soil/water) WATER Sample wt/vol: 1000 (g/ml) ML Lab File ID: SV2A177R.D LOW Date Received: 06/20/98 Level: (low/med) % Moisture: decanted:(Y/N) N Date Extracted: 06/24/98 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/12/98 Dilution Factor: 1.0 Injection Volume: 1.0 (uL) GPC Cleanup: (Y/N) Ν pH: 1.7 **CONCENTRATION UNITS:** CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q DRO AS C10-28 EVEN 310

FORM I SV-1

3/90

EPA SAMPLE NO.

04WP006 Lab Name: EA LABS Contract: FUEL FAR EAENG Case No.: 981036 SAS No.: SDG No.: 9807464 Lab Code: Matrix: (soil/water) WATER Lab Sample ID: 9807471 Sample wt/vol: 1000 (g/ml) ML Lab File ID: SV2A178R.D LOW Level: (low/med) Date Received: 06/20/98 % Moisture: Date Extracted: 06/24/98 decanted:(Y/N) Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/12/98 Dilution Factor: 1.0 Injection Volume: 1.0 (uL) GPC Cleanup: (Y/N) N pH: 1.62 **CONCENTRATION UNITS:** CAS NO. **COMPOUND** (ug/L or ug/Kg) UG/L Q DRO AS C10-28 EVEN 1600

FORM I SV-1

3/90

04WP006 RE

EPA SAMPLE NO.

| Lab Name:                              | EA LABS  |                  |                      | Contract:         | FUEL FA         | <u>R</u>            |                         |  |  |
|----------------------------------------|----------|------------------|----------------------|-------------------|-----------------|---------------------|-------------------------|--|--|
| Lab Code:                              | EAENG    | Case No.:        | Case No.: 981036     |                   | SAS No.:        |                     | SDG No.: <u>9807464</u> |  |  |
| Matrix: (soil/water) V                 |          | TER              |                      | Lal               | Sample I        | D: <u>9807471</u>   | RE                      |  |  |
| Sample wt/vol:                         |          | 000 (g/ml) ML    |                      | Lal               | Lab File ID:    |                     | SV2A216R.D              |  |  |
| Level: (low/med)                       |          | W                |                      | Da                | te Receive      | ed: <u>06/20/98</u> |                         |  |  |
| % Moisture:                            |          | decanted:(Y/N) N |                      | l Da              | Date Extracted: |                     | 07/17/98                |  |  |
| Concentrated Extract Volume: 1000 (uL) |          |                  |                      | Da                | te Analyze      | d: <u>07/21/98</u>  | 07/21/98                |  |  |
| Injection Volume: 1.0 (uL)             |          |                  |                      | Dile              | ution Facto     | or: <u>1.0</u>      |                         |  |  |
| GPC Cleanu                             | p: (Y/N) | N pH: 0          | .83                  |                   |                 |                     |                         |  |  |
|                                        |          |                  | CONCENTRATION UNITS: |                   |                 |                     |                         |  |  |
| CAS NO.                                |          | COMPOUND         |                      | (ug/L or ug/Kg) U |                 | UG/L                | Q                       |  |  |
|                                        |          | DRO AS C10       | -28 EVEN             |                   |                 | 1200                |                         |  |  |

EPA SAMPLE NO.

04WP007 Lab Name: EA LABS Contract: FUEL FAR Case No.: 981036 SAS No.: SDG No.: 9807464 Lab Code: EAENG Matrix: (soil/water) WATER Lab Sample ID: 9807472 Sample wt/vol: 1000 (g/ml) ML Lab File ID: SV2A179R.D Level: (low/med) LOW Date Received: 06/20/98 % Moisture: decanted:(Y/N) Date Extracted: 06/24/98 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/12/98 Injection Volume: Dilution Factor: 1.0 1.0 (uL) GPC Cleanup: (Y/N) N pH: 1.6

**CONCENTRATION UNITS:** 

 CAS NO.
 COMPOUND
 (ug/L or ug/Kg)
 UG/L
 Q

 DRO AS C10-28 EVEN
 320

EPA SAMPLE NO.

04WP008

| Lab Name:                              | EA LABS         |       |                |          | _ Contract: | FUEL FA                 | AR    | L        |          |
|----------------------------------------|-----------------|-------|----------------|----------|-------------|-------------------------|-------|----------|----------|
| Lab Code:                              | EAENG           | (     | Case No.:      | 981036   | _ SAS No    | ).:                     | SD    | G No.:   | 9807464  |
| Matrix: (soil/v                        | vater)          | WATER |                |          | Lal         | b Sample                | ID:   | 980747   | 3        |
| Sample wt/vo                           | ol:             | 1000  | (g/ml)         | ML       | _ Lal       | b File ID:              | 3     | SV2A18   | OR.D     |
| Level: (low/n                          | ned)            | LOW   |                |          | Da          | te Receiv               | ed: ( | 06/20/98 | <u> </u> |
| % Moisture:                            |                 | _ (   | decanted:(     | Y/N)I    | N Da        | te Extract              | ed: ( | 06/24/98 | 3        |
| Concentrated Extract Volume: 1000 (uL) |                 |       |                |          | Da          | Date Analyzed: 07/12/98 |       |          | 3        |
| Injection Volu                         | ıme: <u>1.0</u> | (uL)  |                |          | Dila        | ution Fact              | or:   | 1.0      | <u> </u> |
| GPC Cleanu                             | o: (Y/N)        | N     | _ pH: <u>1</u> | .63      |             |                         |       |          |          |
|                                        |                 |       |                |          | CONC        | ENTRATI                 | ON U  | INITS:   |          |
| CAS NO                                 | ),              | COM   | POUND          |          | (ug/L o     | r ug/Kg)                | UG    | /L       | _ Q      |
|                                        |                 | DR    | O AS C10       | -28 EVEN |             |                         |       | 360      |          |

EPA SAMPLE NO.

04WP009 Lab Name: EA LABS Contract: FUEL FAR SAS No.: SDG No.: 9807464 Lab Code: EAENG Case No.: 981036 WATER Lab Sample ID: 9807474 Matrix: (soil/water) Sample wt/vol: 1000 (g/ml) ML Lab File ID: SV2A181R.D Level: (low/med) LOW Date Received: 06/20/98 Date Extracted: 06/24/98 % Moisture: decanted:(Y/N) Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/12/98 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 N pH: 1.73 GPC Cleanup: (Y/N)

**CONCENTRATION UNITS:** 

 CAS NO.
 COMPOUND
 (ug/L or ug/Kg)
 UG/L
 Q

 DRO AS C10-28 EVEN
 340

EPA SAMPLE NO.

04WP010 EA LABS Contract: FUEL FAR Lab Name: SDG No.: 9807464 Lab Code: EAENG Case No.: 981036 SAS No.: Matrix: (soil/water) WATER Lab Sample ID: 9807475 Sample wt/vol: 1000 (g/ml) ML Lab File ID: SV2A182R.D Level: (low/med) LOW Date Received: 06/20/98 % Moisture: decanted:(Y/N) Ν Date Extracted: 06/24/98 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/12/98 Dilution Factor: 1.0 Injection Volume: 1.0 (uL) GPC Cleanup: (Y/N) N pH: 1.73 **CONCENTRATION UNITS:** CAS NO. **COMPOUND** (ug/L or ug/Kg) UG/L Q

EPA SAMPLE NO.

04WP011 Lab Name: EA LABS Contract: FUEL FAR Case No.: 981036 SAS No.: SDG No.: 9807464 Lab Code: EAENG WATER Lab Sample ID: 9807476 Matrix: (soil/water) Sample wt/vol: 1000 (g/ml) ML Lab File ID: SV2A185R.D Level: (low/med) LOW Date Received: 06/20/98 Date Extracted: 06/24/98 % Moisture: decanted:(Y/N) Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/12/98 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 N GPC Cleanup: (Y/N) pH: 1.8 **CONCENTRATION UNITS:** CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q DRO AS C10-28 EVEN 660

EPA SAMPLE NO.

04WP012 Lab Name: EA LABS Contract: FUEL FAR Lab Code: EAENG Case No.: 981036 SAS No.: SDG No.: 9807464 Matrix: (soil/water) WATER Lab Sample ID: 9807477 Sample wt/vol: 1000 (g/ml) ML Lab File ID: SV2A186R.D LOW Level: (low/med) Date Received: 06/20/98 decanted:(Y/N) Date Extracted: 06/24/98 % Moisture: Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/12/98 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: 1.79 **CONCENTRATION UNITS:** COMPOUND CAS NO. (ug/L or ug/Kg) UG/L Q DRO AS C10-28 EVEN 66

FORM I SV-1

3/90

EPA SAMPLE NO.

150

04WP013 Lab Name: EA LABS Contract: FUEL FAR Lab Code: EAENG Case No.: 981036 SAS No.: SDG No.: 9807464 Matrix: (soil/water) WATER Lab Sample ID: 9807478 Sample wt/vol: 1000 (g/ml) ML Lab File ID: SV2A187R.D LOW Level: (low/med) Date Received: 06/20/98 % Moisture: decanted:(Y/N) Date Extracted: 06/24/98 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/12/98 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: 1.78 **CONCENTRATION UNITS:** CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

EPA SAMPLE NO.

04WP014 **EA LABS** Contract: FUEL FAR Lab Name: Lab Code: EAENG Case No.: 981036 SAS No.: SDG No.: 9807464 Matrix: (soil/water) WATER Lab Sample ID: 9807479 Sample wt/vol: 1000 (g/ml) ML Lab File ID: SV2A188R.D LOW Date Received: 06/20/98 Level: (low/med) % Moisture: decanted:(Y/N) Ν Date Extracted: 06/24/98 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/12/98 Dilution Factor: 1.0 Injection Volume: 1.0 (uL) GPC Cleanup: (Y/N) Ν pH: 1.81 **CONCENTRATION UNITS:** CAS NO. COMPOUND Q (ug/L or ug/Kg) UG/L 2000 DRO AS C10-28 EVEN

EPA SAMPLE NO.

04WP015 Lab Name: EA LABS Contract: FUEL FAR Lab Code: EAENG Case No.: 981036 SAS No.: SDG No.: 9807464 WATER Matrix: (soil/water) Lab Sample ID: 9807480 1000 Sample wt/vol: (g/ml) ML Lab File ID: SV2A189R.D Level: (low/med) LOW Date Received: 06/20/98 % Moisture: decanted:(Y/N) Date Extracted: 06/24/98 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/12/98 Dilution Factor: 1.0 Injection Volume: 1.0 (uL) GPC Cleanup: (Y/N) N pH: 1.8 **CONCENTRATION UNITS:** CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q DRO AS C10-28 EVEN 3000

EPA SAMPLE NO.

2500

D

04WP015 DL Lab Name: EA LABS Contract: FUEL FAR EAENG Case No.: 981036 SAS No.: SDG No.: 9807464 Lab Code: Lab Sample ID: 9807480 DL Matrix: (soil/water) WATER 1000 (g/ml) ML Lab File ID: SV2A203R.D Sample wt/vol: LOW Level: (low/med) Date Received: 06/20/98 Date Extracted: 06/24/98 % Moisture: decanted:(Y/N) Date Analyzed: 07/12/98 Concentrated Extract Volume: 1000 (uL) 1.0 (uL) Dilution Factor: 5.0 Injection Volume: GPC Cleanup: (Y/N) N pH: 1.8 **CONCENTRATION UNITS:** COMPOUND CAS NO. (ug/L or ug/Kg) UG/L Q

EPA SAMPLE NO.

630

04WP016 Lab Name: EA LABS Contract: FUEL FAR Lab Code: EAENG Case No.: 981036 SAS No.: SDG No.: 9807464 Lab Sample ID: 9807481 Matrix: (soil/water) WATER 1000 Lab File ID: SV2A190R.D Sample wt/vol: (g/ml) ML LOW Date Received: 06/20/98 Level: (low/med) Date Extracted: 06/24/98 % Moisture: decanted:(Y/N) Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/12/98 Dilution Factor: 1.0 Injection Volume: 1.0 (uL) GPC Cleanup: (Y/N) N pH: 1.77 **CONCENTRATION UNITS:** CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

EPA SAMPLE NO.

04WP017 Lab Name: **EA LABS** Contract: FUEL FAR SAS No.: SDG No.: 9807464 Lab Code: EAENG Case No.: 981036 Matrix: (soil/water) WATER Lab Sample ID: 9807482 1000 Sample wt/vol: (g/ml) ML Lab File ID: SV2A191R.D Level: (low/med) LOW Date Received: 06/20/98 % Moisture: decanted:(Y/N) Ν Date Extracted: 06/24/98 Concentrated Extract Volume: 1000 Date Analyzed: 07/12/98 (uL) Dilution Factor: 1.0 Injection Volume: 1.0 (uL) GPC Cleanup: (Y/N) N pH: 1.76 **CONCENTRATION UNITS:** CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q DRO AS C10-28 EVEN 150

FORM I SV-1 3/90

EPA SAMPLE NO.

04WP018 Lab Name: EA LABS Contract: FUEL FAR EAENG Case No.: 981036 SAS No.: SDG No.: 9807464 Lab Code: Matrix: (soil/water) WATER Lab Sample ID: 9807483 Sample wt/vol: 1000 (g/ml) ML Lab File ID: SV2A192R.D LOW Level: (low/med) Date Received: 06/20/98 decanted:(Y/N) Date Extracted: 06/24/98 % Moisture: Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/12/98 Dilution Factor: 1.0 Injection Volume: 1.0 (uL) GPC Cleanup: (Y/N) N pH: 1.73 **CONCENTRATION UNITS:** CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q DRO AS C10-28 EVEN 100

EPA SAMPLE NO.

04WP019

**EA LABS** Contract: FUEL FAR Lab Name: Lab Code: EAENG Case No.: 981036 SAS No.: SDG No.: 9807464 Matrix: (soil/water) WATER Lab Sample ID: 9807484 Sample wt/vol: 1000 Lab File ID: (g/ml) ML SV2A193R.D LOW Level: (low/med) Date Received: 06/20/98 Date Extracted: 06/24/98 % Moisture: decanted:(Y/N) Ν Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/12/98 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: 1.7 **CONCENTRATION UNITS:** CAS NO. **COMPOUND** (ug/L or ug/Kg) UG/L Q DRO AS C10-28 EVEN 1200

EPA SAMPLE NO.

3100

04WXD1 **EA LABS** Lab Name: Contract: FUEL FAR Lab Code: EAENG Case No.: 981036 SAS No.: SDG No.: 9807464 WATER Lab Sample ID: 9807485 Matrix: (soil/water) Sample wt/vol: 1000 (g/ml) ML Lab File ID: SV2A147R.D Level: (low/med) LOW Date Received: 06/20/98 % Moisture: decanted:(Y/N) Date Extracted: 06/23/98 N Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/11/98 Dilution Factor: 1.0 Injection Volume: 1.0 (uL) GPC Cleanup: (Y/N) N pH: 1.37 **CONCENTRATION UNITS:** CAS NO. COMPOUND UG/L (ug/L or ug/Kg) Q

EPA SAMPLE NO.

04WXD1 DL

Lab Name: EA LABS Contract: FUEL FAR SAS No.: SDG No.: 9807464 Lab Code: EAENG Case No.: 981036 WATER Lab Sample ID: 9807485 DL Matrix: (soil/water) 1000 (g/ml) ML Lab File ID: SV2A161R.D Sample wt/vol: Level: (low/med) LOW Date Received: 06/20/98 % Moisture: decanted:(Y/N) Ν Date Extracted: 06/23/98 Concentrated Extract Volume: Date Analyzed: 07/11/98 1000 (uL) Dilution Factor: 4.0 Injection Volume: 1.0 (uL) GPC Cleanup: (Y/N) N pH: 1.37 **CONCENTRATION UNITS:** CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 3000 DRO AS C10-28 EVEN D

EPA SAMPLE NO.

280

04WXD2 Lab Name: EA LABS Contract: FUEL FAR SAS No.: SDG No.: 9807464 Lab Code: EAENG Case No.: 981036 WATER Lab Sample ID: 9807486 Matrix: (soil/water) 1000 Lab File ID: SV2A150R.D Sample wt/vol: (g/ml) ML LOW Date Received: 06/20/98 Level: (low/med) Date Extracted: 06/23/98 decanted:(Y/N) % Moisture: Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/11/98 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: 1.33 **CONCENTRATION UNITS:** COMPOUND UG/L CAS NO. (ug/L or ug/Kg) Q

EPA SAMPLE NO.

| Lab Name:       | EA LABS          |                      | Contract: FUEL FAR | TB806232         |  |  |
|-----------------|------------------|----------------------|--------------------|------------------|--|--|
| Lab Code:       | EAENG            | Case No.: 981036     | SAS No.:           | SDG No.: 9807464 |  |  |
| Matrix: (soil/v | vater) <u>WA</u> | TER                  | Lab Sample ID:     | TB806232         |  |  |
| Sample wt/vo    | ol: <u>100</u>   | 0 (g/ml) ML          | Lab File ID:       | SV2A130R.D       |  |  |
| Level: (low/n   | ned) <u>LO\</u>  | <u>v</u>             | Date Received:     |                  |  |  |
| % Moisture:     |                  | decanted:(Y/N)       | N Date Extracted:  | 06/23/98         |  |  |
| Concentrated    | d Extract Volu   | me: <u>1000</u> (uL) | Date Analyzed:     | : 07/10/98       |  |  |
| Injection Volu  | ıme: <u>1.0</u>  | (uL)                 | Dilution Factor:   | 1.0              |  |  |
| GPC Cleanu      | p: (Y/N)         | N pH:                |                    |                  |  |  |
|                 |                  |                      | CONCENTRATION      | UNITS:           |  |  |
| CAS NO          | ), (             | COMPOUND             | (ug/L or ug/Kg) U  | G/L Q            |  |  |
|                 |                  | DRO AS C10-28 EVE    | N                  | 50 U             |  |  |

EPA SAMPLE NO.

50

U

TB806241 **EA LABS** Contract: FUEL FAR Lab Name: SDG No.: 9807464 Case No.: 981036 SAS No.: Lab Code: EAENG WATER Lab Sample ID: TB806241 Matrix: (soil/water) 1000 (g/ml) ML Lab File ID: SV2A163R.D Sample wt/vol: Level: (low/med) LOW Date Received: % Moisture: decanted:(Y/N) Date Extracted: 06/24/98 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/11/98 Dilution Factor: 1.0 Injection Volume: 1.0 (uL) GPC Cleanup: (Y/N) N pH: **CONCENTRATION UNITS:** CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

EPA SAMPLE NO.

TB807172

Lab Name: EA LABS Contract: FUEL FAR Case No.: 981036 SDG No.: 9807464 EAENG SAS No.: ab Code: **WATER** Lab Sample ID: TB807172 Matrix: (soil/water) Sample wt/vol: 1000 (g/ml) ML Lab File ID: SV2A211R.D LOW Date Received: Level: (low/med) Date Extracted: 07/17/98 % Moisture: decanted:(Y/N) Concentrated Extract Volume: 1000 (uL) Date Analyzed: 07/21/98 Dilution Factor: 1.0 Injection Volume: 1.0 (uL) GPC Cleanup: (Y/N) pH: **CONCENTRATION UNITS:** COMPOUND CAS NO. (ug/L or ug/Kg) UG/L Q DRO AS C10-28 EVEN 50